Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control
合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础
基本信息
- 批准号:2225949
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many emerging applications, such as smart healthcare, autonomous driving, and augmented reality, rely on applying real-time Artificial Intelligence (AI) to streaming data that are constantly generated online. Edge AI, which moves AI services to the network edge close to the end users and devices where data streams are generated, is crucial for reducing latency and communication bottlenecks and enabling fast and accurate inference decisions. However, edge AI for online streaming data poses significant challenges due to the unpredictable dynamics of the streaming data and the limited computation/communication capability at the network edge. This project addresses these challenges by developing both new theoretic models that integrate sophisticated learning methods with advanced edge-network control, and practical algorithms that significantly improve the accuracy and timeliness of edge AI services for streaming data. Specifically, the project will focus on three closely-related thrusts: (i) online learning policies for model selection will be developed to quickly identify which machine-learning models should be dynamically deployed at the edge servers for best inference accuracy, while accounting for the heterogeneous switching and feedback costs; (ii) distributed online transfer learning methods will be developed to quickly retrain new machine learning models at the edge upon new streaming data; and (iii) partial-index based edge-network control policies will be developed to optimize the timeliness of interactive edge-AI services under tight resource constraints.Both edge networks and AI are considered crucial elements of next-generation wireless networks. This project will directly benefit network operators and service providers that deploy and operate edge-AI systems. Specifically, the results will help them automate the complex decision-making process required for the end-to-end orchestration of such systems, and improve the accuracy and timeliness of the edge-AI services despite the constantly-changing environments. This project will also benefit the end users of emerging applications powered by edge AI, improving their user experience and well-being. More broadly, the theories and algorithms developed in this project for learning/control co-design will not only transform edge AI, but also benefit other disciplines with similar requirements for optimization under significant dynamism and uncertainty. Finally, this project will contribute teaching and training materials to multiple undergraduate and graduate courses, and will engage women and underrepresented minority students by reaching out to local schools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多新兴应用,如智能医疗保健、自动驾驶和增强现实,都依赖于将实时人工智能(AI)应用于不断在线生成的流数据。边缘AI将AI服务移动到靠近最终用户和生成数据流的设备的网络边缘,对于减少延迟和通信瓶颈以及实现快速准确的推理决策至关重要。然而,由于流数据的不可预测的动态性和网络边缘的有限计算/通信能力,在线流数据的边缘AI带来了重大挑战。该项目通过开发将复杂的学习方法与先进的边缘网络控制相结合的新理论模型,以及显着提高流数据边缘AI服务的准确性和及时性的实用算法来解决这些挑战。具体而言,该项目将侧重于三个密切相关的目标:(i)将开发用于模型选择的在线学习策略,以快速确定哪些机器学习模型应动态部署在边缘服务器上以获得最佳推理准确性,同时考虑异构切换和反馈成本;(ii)将开发分布式在线迁移学习方法,以便在新的流数据的边缘快速重新训练新的机器学习模型;以及(iii)将开发基于部分索引的边缘网络控制策略,以在严格的资源约束下优化交互式边缘AI服务的及时性。边缘网络和AI都被认为是下一代无线网络的关键要素。该项目将使部署和运营边缘AI系统的网络运营商和服务提供商直接受益。具体而言,这些结果将帮助他们自动化此类系统的端到端编排所需的复杂决策过程,并提高边缘人工智能服务的准确性和及时性,尽管环境不断变化。该项目还将使由边缘AI驱动的新兴应用程序的最终用户受益,改善他们的用户体验和福祉。更广泛地说,该项目中开发的用于学习/控制协同设计的理论和算法不仅将改变边缘人工智能,还将使其他具有类似动态和不确定性优化要求的学科受益。最后,该项目将为多个本科生和研究生课程提供教学和培训材料,并将通过与当地学校的联系吸引妇女和代表性不足的少数民族学生。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EAVS: Edge-assisted Adaptive Video Streaming with Fine-grained Serverless Pipelines
- DOI:10.1109/infocom53939.2023.10229102
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Biao Hou;Song Yang;F. Kuipers;Lei Jiao;Xiao-Hui Fu
- 通讯作者:Biao Hou;Song Yang;F. Kuipers;Lei Jiao;Xiao-Hui Fu
When Computing Power Network Meets Distributed Machine Learning: An Efficient Federated Split Learning Framework
- DOI:10.1109/iwqos57198.2023.10188789
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Xinjing Yuan;Lingjun Pu;Lei Jiao;Xiaofei Wang;Mei Yang;Jingdong Xu
- 通讯作者:Xinjing Yuan;Lingjun Pu;Lei Jiao;Xiaofei Wang;Mei Yang;Jingdong Xu
Scheduling In-Band Network Telemetry With Convergence-Preserving Federated Learning
- DOI:10.1109/tnet.2023.3253302
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Yibo Jin;Lei Jiao;Mingtao Ji;Zhuzhong Qian;Sheng Z. Zhang;Ning Chen;Sanglu Lu
- 通讯作者:Yibo Jin;Lei Jiao;Mingtao Ji;Zhuzhong Qian;Sheng Z. Zhang;Ning Chen;Sanglu Lu
Online training data acquisition for federated learning in cloud-edge networks
- DOI:10.1016/j.comnet.2023.109556
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Konglin Zhu;Wentao Chen;Lei Jiao;Jiaxing Wang;Yuyang Peng;Lin Zhang
- 通讯作者:Konglin Zhu;Wentao Chen;Lei Jiao;Jiaxing Wang;Yuyang Peng;Lin Zhang
Orchestrating Blockchain with Decentralized Federated Learning in Edge Networks
- DOI:10.1109/secon58729.2023.10287416
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Yibo Jin;Lei Jiao;Zhuzhong Qian;Ruiting Zhou;Lingjun Pu
- 通讯作者:Yibo Jin;Lei Jiao;Zhuzhong Qian;Ruiting Zhou;Lingjun Pu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Jiao其他文献
ON LOCAL RIGIDITY OF REDUCIBILITY OF ANALYTIC QUASI-PERIODIC COCYCLES ON U(n)
论U(n)上解析准周期环可约化性的局部刚性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:1.1
- 作者:
Xuanji Hou;Lei Jiao - 通讯作者:
Lei Jiao
Scaling flame height of fully turbulent pool fires based on the turbulent transport properties
基于湍流传输特性缩放全湍流池火的火焰高度
- DOI:
10.1016/j.proci.2016.06.135 - 发表时间:
2017 - 期刊:
- 影响因子:3.4
- 作者:
Lei Jiao;Liu Naian - 通讯作者:
Liu Naian
Effect of imposed circulation on temperature and velocity in general fire whirl: An experimental investigation
外加循环对一般火旋流中温度和速度的影响:实验研究
- DOI:
10.1016/j.proci.2018.06.055 - 发表时间:
2019 - 期刊:
- 影响因子:3.4
- 作者:
Lei Jiao;Ji Congcong;Liu Naian;Zhang Linhe - 通讯作者:
Zhang Linhe
<span>Towards Operational Cost Minimization in Hybrid Clouds for Dynamic Resource Provisioning with Delay-aware Optimization</span>
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:8.1
- 作者:
Song Li;Yangfan Zhou;Lei Jiao;Xinya Yan;Xin Wang;Michael R. Lyu; - 通讯作者:
Online Control of Cloud and Edge Resources Using Inaccurate Predictions
使用不准确的预测在线控制云和边缘资源
- DOI:
10.1109/iwqos.2018.8624119 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Lei Jiao;A. Tulino;Jaime Llorca;Yue Jin;A. Sala;Jun Li - 通讯作者:
Jun Li
Lei Jiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Jiao', 18)}}的其他基金
CAREER: Orchestrating Edge Infrastructures and Mobile Devices under Uncertainty to Provision Edge AI as a Service
职业:在不确定性下协调边缘基础设施和移动设备以提供边缘人工智能即服务
- 批准号:
2047719 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant