NSF Convergence Accelerator Track G: Proactive End-to-End Zero Trust-Based Security Intelligence for Resilient Non-cooperative 5G Networks
NSF 融合加速器轨道 G:针对弹性非合作 5G 网络的主动式端到端基于零信任的安全情报
基本信息
- 批准号:2226232
- 负责人:
- 金额:$ 74.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Military and tactical units are required to operate in regions where a dedicated and trusted communications infrastructure may not be available. To communicate effectively, efficiently, and securely at all times, it is critical to have the ability of operating through untrusted indigenous infrastructure and at the same time, seamlessly and securely connect with devices on trusted networks. With the growing threat landscape and attack surfaces in 5G communication systems, a promising approach to tackle the security challenges is to adopt a holistic Zero Trust approach based on the principle of “never trust, always verify”. The goal of this project is to achieve trustworthy communications over untrusted and potentially compromised 5G networks by creating end-to-end security intelligence. The project team comprising of experts from academia, industry, and academic-industry partnerships, will accelerate the development of a software-based solution for automated and trustworthy network orchestration allowing military and critical infrastructure operators to securely communicate using commercial 5G networks. The project aims to develop capabilities that enable military and critical infrastructure personnel to securely communicate using both military and modern commercial 5G infrastructure anywhere in the world, without the risk of being breached or hacked. The developed tools will enhance the capabilities of tactical networks in enforcing Zero Trust and policy-based access management of tactical units. Furthermore, the convergence team will develop a cross-disciplinary curriculum for training and education of next-generation workforce on Zero Trust for 5G networks. Special emphasis will be placed on recruiting under-represented minority students in the research and development of secure 5G networks.This project will integrate cross-disciplinary expertise from trustworthy system design, machine learning/artificial intelligence, and 5G networks & edge computing to accelerate the automated creation of an overlay of proactive, end-to-end zero-trust security and resilience mechanism over the tactical 5G network cloud infrastructure. The convergence research is centered around three main thrusts. Thrust 1 will focus on the dynamic and proactive trust evaluation of tactical devices in the network. A distributed and autonomous approach will be used to collect information about device interactions, leverage triggers, and indicators to make quantitative trust assessments. Thrust 2 will use the trust information obtained in Thrust 1 to orchestrate network resources according to tactical mission scenarios and the requirements of different end-to-end paths. It will be achieved using a deep reinforcement learning approach by iteratively obtaining access permissions from a novel trust management engine and providing it with resource selection decisions. Thrust 3 will automate the access management system to proactively thwart unqualified access to critical resources and prevent lateral movement of attacks and malware. The tools developed as a result of this project will be oriented toward operational scenarios in tactical missions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
军事和战术部队需要在可能没有专用和可靠的通信基础设施的地区开展行动。为了始终有效、高效、安全地进行通信,必须能够通过不受信任的本地基础设施进行操作,同时与受信任网络上的设备无缝、安全地连接。随着5G通信系统中威胁和攻击面的不断增长,解决安全挑战的一种有希望的方法是采用基于“从不信任,始终验证”原则的整体零信任方法。该项目的目标是通过创建端到端安全情报,在不受信任和可能受损的5G网络上实现可信赖的通信。该项目团队由来自学术界、工业界和学术界的专家组成,将加速开发基于软件的解决方案,以实现自动化和可信赖的网络编排,使军事和关键基础设施运营商能够使用商用5G网络安全地进行通信。该项目旨在开发能力,使军事和关键基础设施人员能够在世界任何地方使用军事和现代商用5G基础设施进行安全通信,而不会有被入侵或黑客攻击的风险。开发的工具将增强战术网络在实施零信任和基于策略的战术单元访问管理方面的能力。此外,融合团队还将开发跨学科课程,用于培训和教育下一代5G网络零信任员工。该项目将特别强调招募代表性不足的少数民族学生参与安全5G网络的研究和开发。该项目将整合可信赖的系统设计,机器学习/人工智能和5G网络边缘计算等跨学科专业知识&,以加速自动创建覆盖主动,在战术5G网络云基础设施上实现端到端零信任安全和弹性机制。融合研究围绕三个主要方面展开。重点1将侧重于网络中战术设备的动态和主动信任评估。将使用分布式和自主方法收集有关设备交互、杠杆触发器和指标的信息,以进行定量信任评估。Thrust 2将使用Thrust 1中获得的信任信息,根据战术使命场景和不同端到端路径的要求编排网络资源。它将使用深度强化学习方法,通过迭代地从一个新的信任管理引擎获得访问权限并为其提供资源选择决策来实现。Thrust 3将使访问管理系统自动化,以主动阻止对关键资源的不合格访问,并防止攻击和恶意软件的横向移动。该项目开发的工具将面向战术任务中的作战场景。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junaid Farooq其他文献
Adaptive Risk-Aware Resource Orchestration for 5G Microservices over Multi-Tier Edge-Cloud Systems
多层边缘云系统上 5G 微服务的自适应风险感知资源编排
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Xingqi Wu;Junaid Farooq;Juntao Chen - 通讯作者:
Juntao Chen
Proactive and Resilient UAV Orchestration for QoS Driven Connectivity and Coverage of Ground Users
主动且有弹性的无人机编排,实现 QoS 驱动的连接和地面用户的覆盖
- DOI:
10.1109/cns56114.2022.9947272 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuhui Wang;Junaid Farooq - 通讯作者:
Junaid Farooq
Optimal 3D Placement for Integrated Access Backhauling in UAV-Assisted Wireless Networks Using Reinforcement Learning
使用强化学习在无人机辅助无线网络中实现集成接入回程的最佳 3D 布局
- DOI:
10.1109/mass58611.2023.00090 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuhui Wang;Junaid Farooq - 通讯作者:
Junaid Farooq
Resilient UAV Formation for Coverage and Connectivity of Spatially Dispersed Users
弹性无人机编队可实现空间分散用户的覆盖和连接
- DOI:
10.1109/icc45855.2022.9838960 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuhui Wang;Junaid Farooq - 通讯作者:
Junaid Farooq
RefreshNet: Learning Multiscale Dynamics through Hierarchical Refreshing
RefreshNet:通过分层刷新学习多尺度动力学
- DOI:
10.48550/arxiv.2401.13282 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Junaid Farooq;Danish Rafiq;Pantelis R. Vlachas;M. A. Bazaz - 通讯作者:
M. A. Bazaz
Junaid Farooq的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 74.99万 - 项目类别:
Standard Grant