Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment

合作研究:用于弹性盐水处理的可持续膜的仿生方法

基本信息

  • 批准号:
    2226505
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Many water treatment and industrial processes generate significant amounts of high-salinity brines including seawater desalination, inland brackish water desalination, and oil and gas production by fracking. The management of hazardous high-salinity brines from water desalination plants and oil/gas production wells has emerged as a global environmental challenge. Membrane distillation (MD) is a promising technology for the treatment of high-salinity brines that could reduce the amounts of brine that need to be disposed of while generating a purified water permeate to support industrial and agricultural usages. During the last decade, significant progress has been made toward the development of more efficient MD membranes with high wetting and scaling resistance for high-salinity brine treatment. However, these membranes are typically prepared by modifying their surfaces with long-chain per- and polyfluoroalkyl substances (PFAS), which have become priority pollutants due to increasing concerns about their persistence in the environment, stability, and toxicity to humans and living organisms. The overarching goal of this project is to explore the design and fabrication of wetting- and scaling-resistant MD membranes for brine treatment without the use of PFAS. Inspired by the unique repellency of springtails towards low surface tension liquids, the Principal Investigators propose to test the hypothesis that efficient MD membranes, with both high wetting resistance and high scaling resistance, can be fabricated by covalent attachment of springtail-inspired supracolloidal structures onto the surface of a hydrophobic flat sheet membrane. The successful completion of this project will benefit society through the development of new fundamental knowledge to guide the design and fabrication of PFAS-free membrane materials for robust and efficient brine treatment. Additional benefits to society will be achieved through outreach and educational activities including the mentoring of one graduate student at the University of Tennessee, Knoxville and one graduate student at Colorado State University.The effectiveness of membrane distillation (MD) as a brine treatment technology is limited by both the intrusion of brines into membrane pores (membrane pore wetting) and the precipitation of minerals on the membrane surfaces (membrane scaling). The goal of this project is to design and fabricate a new family of biomimetic wetting- and scaling-resistant MD membranes without using PFAS building blocks. To advance this goal, the Principal Investigators (PIs) proposal to explore new strategies to modify the surface of a commercially available hydrophobic flat sheet membrane by covalent attachment of supracolloidal structures that mimic the overhang texture of springtails and their unique capability to repel low surface tension liquids. These supracolloidal structures will be formed through controlled assembly of smaller colloids onto the surfaces of larger colloids that have overhang structures with negative curvature and non-fluorinated ligands. The specific objectives of the research are to: 1) Elucidate the design criteria of supracolloidal structures for wetting resistant membranes, 2) Characterize and unravel the mechanisms of scaling resistance of the new biomimetic MD membranes, and 3) Evaluate the treatment effectiveness of the new MD membranes using model brine mixtures and a high salinity produced water from an oil and gas production field in Colorado. The successful completion of this project has the potential for transformative impact through the generation of new fundamental knowledge and functional materials to advance the development of PFAS-free MD membranes for efficient and cost-effective treatment of high salinity brines. To implement the educational and training goals of this project, the Principal Investigators (PIs) plan to integrate the findings from this research into existing undergraduate and graduate courses at the University of Tennessee, Knoxville (UTK) and Colorado State University (CSU). In addition, the PIs propose to leverage existing programs at UTK and CSU to launch outreach activities to recruit and engage high and middle school students from underrepresented groups with a focus on the utilization of bioinspired materials to improve water sustainability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多水处理和工业过程产生大量的高盐度盐水,包括海水淡化,内陆咸水淡化以及通过水力压裂法生产石油和天然气。来自水淡化厂和石油/天然气生产威尔斯井的危险高盐度盐水的管理已成为全球环境挑战。膜蒸馏(MD)是一种用于处理高盐度盐水的有前途的技术,其可以减少需要处理的盐水的量,同时产生纯化的水渗透物以支持工业和农业用途。在过去的十年中,已经取得了显着的进展,朝着更有效的MD膜具有高润湿性和抗结垢性的高盐度盐水处理的发展。然而,这些膜通常通过用长链全氟烷基和多氟烷基物质(PFAS)改性它们的表面来制备,由于人们越来越关注它们在环境中的持久性、稳定性以及对人类和生物体的毒性,PFAS已成为优先污染物。该项目的总体目标是探索设计和制造的润湿和防垢MD膜盐水处理不使用PFAS。受跳虫对低表面张力液体的独特排斥性的启发,主要研究人员提出测试以下假设:具有高润湿性和高抗结垢性的有效MD膜可以通过将跳虫激发的supracolloidal结构共价连接到疏水平板膜的表面上来制造。该项目的成功完成将通过开发新的基础知识来指导无PFAS膜材料的设计和制造,以实现强大而高效的盐水处理,从而造福社会。将通过外联和教育活动,包括指导田纳西大学的一名研究生,诺克斯维尔和一名科罗拉多州立大学的研究生。膜蒸馏作为一种盐水处理技术的有效性受到盐水侵入膜孔(膜孔润湿)和矿物在膜表面上的沉淀(膜结垢)。该项目的目标是设计和制造一个新的仿生润湿和防垢MD膜家族,而不使用PFAS构建块。为了推进这一目标,主要研究者(PI)建议探索新的策略,通过共价连接supracolloidal结构来修改市售疏水平板膜的表面,该结构模仿弹尾的悬垂纹理及其独特的排斥低表面张力液体的能力。这些超胶体结构将通过较小胶体在较大胶体表面上的受控组装而形成,所述较大胶体具有负曲率的悬垂结构和非氟化配体。研究的具体目标是:1)阐明抗润湿膜的超胶体结构的设计标准,2)表征和解开新的仿生MD膜的抗结垢的机制,和3)使用模型盐水混合物和来自科罗拉多的石油和天然气生产领域的高盐度采出水的新MD膜的处理效果进行评估。该项目的成功完成具有潜在的变革性影响,通过产生新的基础知识和功能材料,推动无PFAS MD膜的开发,以有效和经济高效地处理高盐度盐水。为了实现本项目的教育和培训目标,主要研究者(PI)计划将本研究的结果整合到田纳西大学诺克斯维尔(UTK)和科罗拉多州立大学(CSU)的现有本科和研究生课程中。此外,PI建议利用UTK和CSU的现有项目开展外展活动,以招募和吸引来自代表性不足的群体的高中生和中学生,重点是利用生物启发材料来提高水的可持续性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiezheng Tong其他文献

Targeting sustainable desalination solutions: A techno-economic and life cycle approach to guiding zero liquid discharge desalination
以可持续的海水淡化解决方案为目标:一种用于指导零液体排放海水淡化的技术经济和生命周期方法
  • DOI:
    10.1016/j.jclepro.2025.145445
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    10.000
  • 作者:
    Brandi M. Grauberger;Garrett M. Cole;Tiezheng Tong;Shihong Lin;Jason C. Quinn;Todd Bandhauer
  • 通讯作者:
    Todd Bandhauer
Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge
  • DOI:
    10.1007/s11783-019-1147-y
  • 发表时间:
    2019-06-27
  • 期刊:
  • 影响因子:
    6.400
  • 作者:
    Tiezheng Tong;Kenneth H. Carlson;Cristian A. Robbins;Zuoyou Zhang;Xuewei Du
  • 通讯作者:
    Xuewei Du
Elucidating governing factors of PFAS removal by polyamide membranes using machine learning and molecular simulations
使用机器学习和分子模拟阐明聚酰胺膜去除全氟烷基物质的控制因素
  • DOI:
    10.1038/s41467-024-55320-9
  • 发表时间:
    2024-12-30
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Nohyeong Jeong;Shinyun Park;Subhamoy Mahajan;Ji Zhou;Jens Blotevogel;Ying Li;Tiezheng Tong;Yongsheng Chen
  • 通讯作者:
    Yongsheng Chen
Mineral scaling and organic fouling in electrodialytic crystallization
  • DOI:
    10.1016/j.memsci.2024.123024
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yiqun Yao;Xudong Zhang;Ruoyu Wang;Shihong Lin;Tiezheng Tong
  • 通讯作者:
    Tiezheng Tong
A tale of two minerals: contrasting behaviors and mitigation strategies of gypsum scaling and silica scaling in membrane desalination

Tiezheng Tong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiezheng Tong', 18)}}的其他基金

CAREER: Harnessing Mineralogy and Polymer Science to Elucidate Mechanisms and Mitigation Strategies for Mineral Scaling in Membrane Desalination
职业:利用矿物学和聚合物科学阐明膜淡化中矿物结垢的机制和缓解策略
  • 批准号:
    2145627
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elucidating the Coupling of Inorganic Scaling and Organic Fouling in Reverse Osmosis Desalination: An Integrated Experimental and Computational Approach
合作研究:阐明反渗透海水淡化中无机结垢和有机污垢的耦合:一种综合实验和计算方法
  • 批准号:
    2143970
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
  • 批准号:
    2231031
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
  • 批准号:
    2231032
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
  • 批准号:
    2140650
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
  • 批准号:
    2226501
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
  • 批准号:
    2142519
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: 3D Printing of Bioinspired Hierarchical Structures with Controllable Roughness for Stable and Long-term Air Retention
合作研究:3D 打印具有可控粗糙度的仿生分层结构,以实现稳定和长期的空气保留
  • 批准号:
    2113727
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: 3D Printing of Bioinspired Hierarchical Structures with Controllable Roughness for Stable and Long-term Air Retention
合作研究:3D 打印具有可控粗糙度的仿生分层结构,以实现稳定和长期的空气保留
  • 批准号:
    2114119
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Detection and analysis of airborne coronavirus with bioinspired membranes
EAGER:合作研究:利用仿生膜检测和分析空气中的冠状病毒
  • 批准号:
    2029371
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track III: Bioinspired Autonomy in Natural Environments
合作研究:IRES Track III:自然环境中的仿生自治
  • 批准号:
    1954166
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Bioinspired Catalysts with Earth-Abundant Metals for Reductive Treatment of Waterborne Contaminants
合作研究:采用地球储量丰富的金属的仿生催化剂,用于还原处理水污染物
  • 批准号:
    1932908
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了