Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales

合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植

基本信息

  • 批准号:
    2226649
  • 负责人:
  • 金额:
    $ 17.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

This award was made through the "Signals in the Soil (SitS)" solicitation, a collaborative partnership between the National Science Foundation and the United States Department of Agriculture National Institute of Food and Agriculture (USDA NIFA). According to the US Center for Disease Control, arsenic (As) is the highest priority contaminant due to its prevalence and association with numerous chronic diseases, including heart disease, cancer, and diabetes. Hundreds of millions of people are chronically exposed to high levels of naturally occurring As through both drinking water and food. Paddy rice fields, which cover 12% of all arable land and provide 20% of human caloric intake, contain abundant iron oxides that retain natural As. Iron reduction in paddy fields mobilizes this As into water where it can be absorbed into rice crops. Humans are exposed to this toxic As when they consume this rice, and the As also reduces overall rice yields because it is toxic to rice too. Thus, As release from rice paddy soils poses a human health risk and threatens farming communities and the supply of one of the world’s most important crops. This collaborative research team from Columbia University, Union College, and San Diego State University aims to identify how rice cultivation practices, along with climate, affect where and when As is released from rice paddy soils and how this ultimately translates into absorption into the rice crop. Findings from this work will use real-time data from field and satellite measurements to help predict areas of greatest risk of As in the rice crop and to identify rice cultivation practices that minimize As uptake by the rice crop. This information will be shared with farming communities in the project study areas of Cambodia and Texas as well as with the broader scientific community to help promote better rice cultivation practices. The goal of this research is to develop a mechanistic understanding of the environmental factors that control the dissolved As concentration and speciation in rice paddy soils, and to use this information to develop effective management solutions. This research goal is well-suited to SitS because this multidisciplinary research team fuses frequent and dense measurements of soil geochemistry, mineralogy, microbiology, and hydrology collected with in situ sensors, remote sensing, and sampling in rice paddy soils to observe, model, and predict arsenic solid-solution partitioning and uptake into rice. High-resolution remote sensing data will be used to upscale pore-scale observations to field and landscape scales. The research will test three hypotheses examining the development of anaerobic conditions, iron (Fe) reduction and As release, and rice uptake of As: 1) External controls including climate, irrigation and fertilization drive the timing, location and depth of the redox gradients, and ultimately regulate As uptake in rice; 2) Steep near-surface gradients in dissolved As result from overlapping Fe and sulfate reduction, and create transient thioarsenic complexes that decouple As solubility from Fe reduction; and 3) When integrated with process-based models, remotely sensed indicators of water and nutrient stress can accurately scale field observations of redox gradients and rice uptake to larger landscapes. Field sites will be selected from working rice farms in Cambodia where rice-As levels frequently exceed safe levels. These sites will be extensively characterized throughout the year to measure changes in the composition, mineralogy, and redox state of Fe, As, and other key elements in the paddy soil and controls, the microbiological communities and metabolisms that facilitate those transformations, and their relationship to surface water hydrology, water balance, and irrigation regimens. Quantitative models will be constructed to test potential reaction networks and to establish the kinetic and thermodynamic controls affecting redox gradients in rice paddies. Novel machine learning, probabilistic models, and remotely sensed indicators of inundation, water, and nutrient stress will be used to predict the spatial and temporal distribution of redox processes, aqueous As, and rice-As levels more widely, and at a fine spatial scale. This integrated approach will provide new and powerful insight into the mechanism and dynamics of redox processes and environmental controls on As uptake by rice that will be tested with field sampling in Texas, where rice-As is also variable and frequently elevated. Broader Impacts activities include training of graduate and undergraduate students, and also research experiences for underrepresented and first-generation high school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是通过“土壤中的信号(SitS)”征集,国家科学基金会和美国农业部国家粮食和农业研究所(USDA NIFA)之间的合作伙伴关系。根据美国疾病控制中心,砷(As)是最优先的污染物,因为它的流行和与许多慢性疾病,包括心脏病,癌症和糖尿病的关联。数以亿计的人通过饮用水和食物长期暴露于高水平的天然存在的As。 水稻田占所有可耕地的12%,提供人类20%的热量摄入,含有丰富的铁氧化物,保留天然的As。稻田中铁的减少将这种As动员到水中,在那里它可以被水稻作物吸收。人类在食用这种大米时会接触到这种有毒的As,As也会降低大米的整体产量,因为它对大米也有毒。因此,从稻田土壤中释放的砷对人类健康构成威胁,并威胁到农业社区和世界上最重要的作物之一的供应。这个来自哥伦比亚大学,联合学院和圣地亚哥州立大学的合作研究小组旨在确定水稻种植实践沿着气候如何影响As从稻田土壤中释放的位置和时间,以及这最终如何转化为水稻作物的吸收。这项工作的结果将使用来自实地和卫星测量的实时数据,以帮助预测水稻作物中As风险最大的区域,并确定水稻种植方法,以尽量减少水稻作物的As吸收。这些信息将与柬埔寨和得克萨斯州项目研究地区的农业社区以及更广泛的科学界分享,以帮助推广更好的水稻种植方法。 本研究的目标是开发一个机械的理解的环境因素,控制溶解的砷浓度和形态在稻田土壤,并利用这些信息,以制定有效的管理解决方案。这一研究目标非常适合SitS,因为这个多学科研究团队融合了土壤地球化学,矿物学,微生物学和水文学的频繁和密集测量,并在稻田土壤中收集了原位传感器,遥感和采样,以观察,建模和预测砷固溶体的分配和吸收。高分辨率遥感数据将用于将孔隙尺度观测提升到实地和景观尺度。本研究将检验三个假设,即厌氧条件的发展、铁还原和砷释放以及水稻对砷的吸收:1)外部控制因素(包括气候、灌溉和施肥)驱动氧化还原梯度的时间、位置和深度,并最终调节水稻对砷的吸收;(2)Fe还原和硫酸盐还原的重叠导致溶解态As的近地表梯度变陡,并产生瞬时硫代砷络合物,使As溶解度与Fe还原分离;当与基于过程的模型相结合时,水和养分胁迫的遥感指标可以准确地将氧化还原梯度和水稻吸收的实地观测扩展到更大的景观。将从柬埔寨的水稻农场中选择田间地点,那里的水稻砷含量经常超过安全水平。这些网站将广泛的特点,全年测量的组成,矿物学和氧化还原状态的变化,铁,砷,和其他关键元素的水稻土和控制,微生物群落和代谢,促进这些转换,以及它们的关系,地表水水文,水平衡和灌溉制度。将构建定量模型来测试潜在的反应网络,并建立影响稻田氧化还原梯度的动力学和热力学控制。新的机器学习,概率模型和遥感指标的淹没,水和养分压力将被用来预测的空间和时间分布的氧化还原过程,水砷,水稻砷水平更广泛,并在一个良好的空间尺度。这种综合的方法将提供新的和强大的洞察机制和动力学的氧化还原过程和环境控制的水稻吸收,将在得克萨斯州,在那里的水稻作为也是可变的,经常升高的现场采样进行测试。 更广泛的影响活动包括研究生和本科生的培训,以及代表性不足和第一代高中生的研究经验。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mapping multi-decadal wetland loss: Comparative analysis of linear and nonlinear spatiotemporal characterization
  • DOI:
    10.1016/j.rse.2023.113969
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Margot Mattson;Daniel Sousa;Amy Quandt;Paul Ganster;Trent Biggs
  • 通讯作者:
    Margot Mattson;Daniel Sousa;Amy Quandt;Paul Ganster;Trent Biggs
Spectral Characteristics of the Dynamic World Land Cover Classification
动态世界土地覆盖分类的光谱特征
  • DOI:
    10.3390/rs15030575
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Small, Christopher;Sousa, Daniel
  • 通讯作者:
    Sousa, Daniel
The effect of agricultural land retirement on pesticide use
  • DOI:
    10.1016/j.scitotenv.2023.165224
  • 发表时间:
    2023-07-03
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Larsen,Ashley E.;Quandt,Amy;Sousa,Daniel
  • 通讯作者:
    Sousa,Daniel
Scalable Early Detection of Grapevine Viral Infection with Airborne Imaging Spectroscopy
利用机载成像光谱对葡萄病毒感染进行可扩展的早期检测
  • DOI:
    10.1094/phyto-01-23-0030-r
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Galvan, Fernando E.;Pavlick, Ryan;Trolley, Graham;Aggarwal, Somil;Sousa, Daniel;Starr, Charles;Forrestel, Elisabeth;Bolton, Stephanie;Alsina, Maria del;Dokoozlian, Nick
  • 通讯作者:
    Dokoozlian, Nick
Robust Cloud Suppression and Anomaly Detection in Time-Lapse Thermography
  • DOI:
    10.3390/rs16020255
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Small;D. Sousa
  • 通讯作者:
    Christopher Small;D. Sousa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Sousa其他文献

Asymmetry in the prices of crude oil and diesel and gasoline prices in Brazil
巴西原油及柴油和汽油价格不对称
  • DOI:
    10.1108/jes-08-2022-0437
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gerrio Barbosa;Daniel Sousa;Cássio da Nóbrega Besarria;Robson Lima;Diego Pitta de Jesus
  • 通讯作者:
    Diego Pitta de Jesus
Self-Awareness, Verbalization and New Meanings as the Heart and Soul of Significant Events in Existential Psychotherapy
自我意识、语言化和新意义作为存在主义心理治疗中重大事件的核心和灵魂
  • DOI:
    10.1007/s10879-018-9410-2
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Daniel Sousa;A. Pestana;António Tavares
  • 通讯作者:
    António Tavares
Hyperspectral characterization of wastewater in the Tijuana River Estuary using laboratory, field, and EMIT satellite spectroscopy
使用实验室、现场和 EMIT 卫星光谱对蒂华纳河河口废水中的高光谱特征进行表征
  • DOI:
    10.1016/j.scitotenv.2025.179598
  • 发表时间:
    2025-06-15
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Eva Scrivner;Natalie Mladenov;Trent Biggs;Alexandra Grant;Elise Piazza;Stephany Garcia;Christine M. Lee;Christiana Ade;Nick Tufillaro;Philipp Grötsch;Omar Zurita;Benjamin Holt;Daniel Sousa
  • 通讯作者:
    Daniel Sousa
Bioprocessing of main agro-industrial wastes of Portugal for protein enrichment and lignocellulolytic enzymes production
对葡萄牙主要农工业废物进行生物处理,以富集蛋白质和生产木质纤维素酶
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Sousa
  • 通讯作者:
    Daniel Sousa
Using Naïve Bayes and Genetic Algorithms to Find Influent Twitter Users to Forecast the S&P 500
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Sousa
  • 通讯作者:
    Daniel Sousa

Daniel Sousa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
  • 批准号:
    2226647
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
  • 批准号:
    2226648
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Collaborative Research: SitS: Collaborative: Long Range Wirelessly Powered Multi-variable Sensor Network for Continuous Monitoring of the Soil Health
协作研究:SitS:协作:用于连续监测土壤健康的远程无线供电多变量传感器网络
  • 批准号:
    2226612
  • 财政年份:
    2022
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Collaborative Research: SitS: Collaborative: Long Range Wirelessly Powered Multi-variable Sensor Network for Continuous Monitoring of the Soil Health
协作研究:SitS:协作:用于连续监测土壤健康的远程无线供电多变量传感器网络
  • 批准号:
    2226613
  • 财政年份:
    2022
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Collaborative Research: SitS: Collaborative: Long Range Wirelessly Powered Multi-variable Sensor Network for Continuous Monitoring of the Soil Health
协作研究:SitS:协作:用于连续监测土壤健康的远程无线供电多变量传感器网络
  • 批准号:
    2226614
  • 财政年份:
    2022
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Collaborative Research: SitS: Development of multiple-scale sensor and remote sensing technology to quantify abiotic carbon dioxide emission in irrigated soils of aridlands
合作研究:SitS:开发多尺度传感器和遥感技术来量化干旱地区灌溉土壤中的非生物二氧化碳排放
  • 批准号:
    2034340
  • 财政年份:
    2021
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
SitS: Collaborative Research: Understand and forecast long-term variations of in-situ geophysical and geomechanical characteristics of degrading permafrost in the Arctic
SitS:合作研究:了解和预测北极退化永久冻土原位地球物理和地质力学特征的长期变化
  • 批准号:
    2034366
  • 财政年份:
    2021
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
SitS: Collaborative Research: Soils are signaling shifts in aggregate life-cycles: What does this mean for water, carbon and climate feedbacks in the Anthropocene?
SitS:合作研究:土壤正在发出总体生命周期变化的信号:这对人类世的水、碳和气候反馈意味着什么?
  • 批准号:
    2034232
  • 财政年份:
    2021
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Collaborative Research: SitS: Development of multiple-scale sensor and remote sensing technology to quantify abiotic carbon dioxide emission in irrigated soils of aridlands
合作研究:SitS:开发多尺度传感器和遥感技术来量化干旱地区灌溉土壤中的非生物二氧化碳排放
  • 批准号:
    2034312
  • 财政年份:
    2021
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
SitS: Collaborative Research: Understand and forecast long-term variations of in-situ geophysical and geomechanical characteristics of degrading permafrost in the Arctic
SitS:合作研究:了解和预测北极退化永久冻土原位地球物理和地质力学特征的长期变化
  • 批准号:
    2034363
  • 财政年份:
    2021
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了