EAGER: Interpretable and Generalizable AI for Smart Manufacturing

EAGER:用于智能制造的可解释和可推广的人工智能

基本信息

  • 批准号:
    2227450
  • 负责人:
  • 金额:
    $ 25.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) award is to conceptualize and research a generalized machine learning framework and the associated software tools needed to categorize manufacturing data acquired from a full-scale, operating commercial microelectronics fabrication facility and derive reliable control actions from that data using machine learning methods. Research on manufacturing-relevant machine learning methods has been frustrated by a lack of access to the large amount of industry-validated data needed to enable it. The project will explore the potential of new machine learning methods to reveal the implicit knowledge incorporated in that data to improve yield and productivity.The project addresses the three most critical impediments to the application of machine learning (ML) in manufacturing systems: (1) a lack of access to the massive amounts of data needed to research and develop machine learning architectures that are suited to manufacturing-derived data, (2) a lack of manufacturing-specific ML methods for aggregating and classifying that data to produce datasets tailored to training ML systems for specific processes, machines or operations and a lack of ML architectures that have been designed for and can make inferences using that data, and (3) a reluctance of manufacturing engineers to trust “black box” methods. The project is a collaboration with Seagate Technology to address all three impediments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
EARLY概念探索性研究(EAGER)奖旨在概念化和研究广义机器学习框架和相关软件工具,这些工具用于对从全规模商业微电子制造设施获得的制造数据进行分类,并使用机器学习方法从该数据中获得可靠的控制动作。 由于无法获得大量经过行业验证的数据,制造相关机器学习方法的研究一直受到阻碍。该项目将探索新机器学习方法的潜力,以揭示数据中包含的隐含知识,从而提高产量和生产力。该项目解决了机器学习(ML)应用的三个最关键障碍在制造系统中:(1)缺乏对研究和开发适合制造业衍生数据的机器学习架构所需的大量数据的访问,(2)缺乏特定于制造业的ML方法来聚合和分类这些数据,以生成为特定过程训练ML系统而定制的数据集,机器或操作以及缺乏为这些数据设计并可以使用这些数据进行推断的ML架构,以及(3)制造工程师不愿意信任“黑箱”方法。 该项目是与希捷技术公司合作解决所有三个障碍的项目。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Divide and Conquer: Answering Questions with Object Factorization and Compositional Reasoning
  • DOI:
    10.48550/arxiv.2303.10482
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shi Chen;Qi Zhao
  • 通讯作者:
    Shi Chen;Qi Zhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi Zhao其他文献

Recombinant-fully-human-antibody decorated highly-stable far-red AIEdots for in vivo HER-2 receptor-targeted imaging
重组全人抗体修饰高度稳定的远红 AIEdot,用于体内 HER-2 受体靶向成像
  • DOI:
    10.1039/c8cc03037e
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Yayun Wu;Zhizhen Chen;Pengfei Zhang;Lihua Zhou;Tao Jiang;Huajie Chen;Ping Gong;Dimiter S. Dimitrov;Lintao Cai;Qi Zhao
  • 通讯作者:
    Qi Zhao
Fate and reactions of methane during biodegradation in an aquifer contaminated with petroleum hydrocarbons in Northeast China
中国东北地区石油烃污染含水层中甲烷生物降解过程的归宿和反应
  • DOI:
    10.2343/geochemj.2.0400
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    X. Su;Ende Zuo;Hang Lv;Qi Zhao;Pucheng Zhu;G. Lin;Mingyao Liu
  • 通讯作者:
    Mingyao Liu
An Investigation of the Uncertainty of Handbook of Emission Factors for Road Transport (HBEFA) for Estimating Greenhouse Gas Emissions: A Case Study in Beijing
用于估算温室气体排放的道路运输排放因子手册(HBEFA)的不确定度调查:以北京为例
  • DOI:
    10.1177/0361198118796710
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Hongyu Lu;Guohua Song;Qi Zhao;Jingyi Wang;Weinan He;Lei Yu
  • 通讯作者:
    Lei Yu
An Improved Adaptive Kalman Filter for Altitude Estimation of Quadrotors
四旋翼飞行器高度估计的改进自适应卡尔曼滤波器
A sequence-based generalization of mean-field annealing using the Forward/Backward algorithm: Application to image segmentation
使用前向/后向算法的基于序列的平均场退火推广:在图像分割中的应用

Qi Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi Zhao', 18)}}的其他基金

Travel: Group Travel Grant for the Doctoral Consortium of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023)
旅行:为 IEEE/CVF 计算机视觉和模式识别会议博士联盟 (CVPR 2023) 提供团体旅行补助金
  • 批准号:
    2325378
  • 财政年份:
    2023
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
RI: Small: Visual How: Task Understanding and Description in the Real World
RI:小:视觉方式:现实世界中的任务理解和描述
  • 批准号:
    2143197
  • 财政年份:
    2022
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
RI: Small: Exploring Rationale behind Visual Understanding: Combining Attention and Reasoning
RI:小:探索视觉理解背后的基本原理:注意力和推理的结合
  • 批准号:
    1908711
  • 财政年份:
    2019
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
S&AS: FND: Context-Aware Active Data Gathering for Complex Outdoor Environments
S
  • 批准号:
    1849107
  • 财政年份:
    2019
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
Influence of Surface Properties of New Biomaterials for Catheters on Bacterial Adhesion in Urine
导管用新型生物材料表面特性对尿液中细菌粘附的影响
  • 批准号:
    EP/P00301X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Research Grant
SBIR Phase I: Bendable Ceramic Paper Membranes
SBIR 第一阶段:可弯曲陶瓷纸膜
  • 批准号:
    0910419
  • 财政年份:
    2009
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant

相似海外基金

Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deciphering electrophysiological Alzheimer's Disease biomarkers for early diagnosis using interpretable deep learning
使用可解释的深度学习破译电生理阿尔茨海默病生物标志物以进行早期诊断
  • 批准号:
    24K18602
  • 财政年份:
    2024
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Learning Generalizable and Interpretable Embodied AI with Human Priors
职业:利用人类先验学习可概括和可解释的具体人工智能
  • 批准号:
    2339769
  • 财政年份:
    2024
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safe and Interpretable Autonomy in Healthcare
职业:迈向医疗保健领域安全且可解释的自主权
  • 批准号:
    2340139
  • 财政年份:
    2024
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Standard Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Research Grant
AIPPN: Interpretable AI enabled Molecular Identification Pipeline for Plant-parasitic Nematodes
AIPPN:可解释的人工智能支持植物寄生线虫分子识别管道
  • 批准号:
    10077647
  • 财政年份:
    2023
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Collaborative R&D
Interpretable Machine Learning Modelling of Future Extreme Floods under Climate Change
气候变化下未来极端洪水的可解释机器学习模型
  • 批准号:
    2889015
  • 财政年份:
    2023
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Studentship
Interpretable data-driven building energy analytics
可解释的数据驱动的建筑能源分析
  • 批准号:
    2891094
  • 财政年份:
    2023
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Studentship
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 25.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了