SBIR Phase I: Artificial Intelligence (AI)-Powered, Wearable Technology to Monitor and Assess Strength Training Activities
SBIR 第一阶段:人工智能 (AI) 支持的可穿戴技术,用于监控和评估力量训练活动
基本信息
- 批准号:2227835
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact /commercial potential of this Small Business Innovation Research (SBIR) Phase I project is in developing improved assessment tools and as a result, improved knowledge about muscle health and strength training. The Center for Disease Control (CDC) data shows that 76 million people in the US do strength training consistently and meet exercise requirement standards. The social and health benefits of strength training like muscular growth, fat reduction, better body balance, and improved mental health have been well characterized in numerous peer reviewed studies. There are many wearable devices on the market that can monitor cardiovascular health via heart and respiratory rates, but muscle health data is missing, because monitoring strength training is much more difficult. This project will develop a low-profile, artificial intelligence (AI)-driven wearable system composed of wrist and torso sensors. The proposed system will automatically recognize a training program, learn about the user goals and training experience, and provide step by step guidance, individualized to the user's abilities and activities. The solution will work in any environment (e.g., home, gym, or outdoor location). The system will be able to initiate, maintain, and improve strength training health regimens.This Small Business Innovation Research Phase I project will combine AI and signal processing techniques to enable inertial measurement unit (IMU)-based sensors to robustly detect strength training movements, accurately count repetitions, and provide performance metrics like time under tension, exerciser pace, amount of the total work during an exercise, power generated, range of motion, etc. Towards this end, an optimized deep-learning model will be built that will detect 15 strength training exercises with 99% accuracy and will miss no more than one out of hundred repetitions. Another key objective is the creation of a neural network structure to reduce IMU drifts via feature aggregation of the knowledge of an exercise type being performed and human kinematics. The anticipated technical result is performance assessment with a root-mean-square deviation of less than 0.02 m for trajectory and less than 0.025 m/s for velocity. Finally, anticipated results include documentation of user needs aligned with implemented and future product features.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小企业创新研究(SBIR)第一阶段项目的更广泛的影响/商业潜力是开发改进的评估工具,从而提高对肌肉健康和力量训练的认识。 美国疾病控制中心(CDC)的数据显示,美国有7600万人持续进行力量训练,并符合运动要求标准。 力量训练的社会和健康益处,如肌肉生长,减少脂肪,更好的身体平衡和改善心理健康,在许多同行评议的研究中得到了很好的描述。市场上有许多可穿戴设备可以通过心率和呼吸率监测心血管健康,但肌肉健康数据却缺失,因为监测力量训练要困难得多。该项目将开发一种低调的人工智能(AI)驱动的可穿戴系统,由手腕和躯干传感器组成。 所提出的系统将自动识别培训计划,了解用户的目标和培训经验,并提供一步一步的指导,个性化的用户的能力和活动。该解决方案将在任何环境中工作(例如,家庭、健身房或室外位置)。该系统将能够启动,维持和改善力量训练健康方案。这个小企业创新研究第一阶段项目将结合联合收割机和信号处理技术,使基于惯性测量单元(IMU)的传感器能够稳健地检测力量训练动作,准确地计算重复次数,并提供性能指标,如紧张状态下的时间,锻炼者的速度,锻炼期间的总工作量,为此,将建立一个优化的深度学习模型,该模型将以99%的准确率检测15个力量训练练习,并且不会错过超过百分之一的重复。另一个关键目标是创建一个神经网络结构,以减少IMU漂移通过特征聚合的知识正在执行的运动类型和人体运动学。预期的技术成果是性能评估,弹道均方根偏差小于0.02米,速度均方根偏差小于0.025米/秒。最后,预期的结果包括用户需求的文档与实现和未来的产品功能相一致。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitry Popov其他文献
Unresolved issues of antibiotic therapy of infections caused by Staphylococcus aureus
- DOI:
10.36488/cmac.2020.3.189-195 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Dmitry Popov - 通讯作者:
Dmitry Popov
HP-PbF2-type FeCl2 as a potential Cl-carrier in the deep Earth
HP-PbF2 型 FeCl2 作为地球深处潜在的 Cl 载体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.1
- 作者:
Hongsheng Yuan;Lianjie Man;Duck Young Kim;Dmitry Popov;Yue Meng;Eran Greenberg;Vitali Prakapenka;Li Zhang - 通讯作者:
Li Zhang
Twisted string-based passively variable transmission: Concept, model, and evaluation
基于扭弦的被动可变传动:概念、模型和评估
- DOI:
10.1016/j.mechmachtheory.2016.02.009 - 发表时间:
2016 - 期刊:
- 影响因子:5.2
- 作者:
Harsimran Singh;Harsimran Singh;Dmitry Popov;I. Gaponov;J. Ryu - 通讯作者:
J. Ryu
Rotational twisted string actuator with linearized output: Mathematical model and experimental evaluation
具有线性输出的旋转扭弦致动器:数学模型和实验评估
- DOI:
10.1109/aim.2015.7222682 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Usman Mehmood;Dmitry Popov;I. Gaponov;J. Ryu - 通讯作者:
J. Ryu
A Pilot Study of Selective Lipopolysaccharide Adsorption and Coupled Plasma Filtration and Adsorption in Adult Patients with Severe Sepsis
成人严重脓毒症患者选择性脂多糖吸附及血浆过滤与吸附耦合的初步研究
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3
- 作者:
M. Yaroustovsky;M. Abramyan;N. Krotenko;Dmitry Popov;M. Plyushch;E. Rogalskaya - 通讯作者:
E. Rogalskaya
Dmitry Popov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: A Manufacturing Monitoring System Using Sound Spectrograms and Artificial Intelligence
SBIR 第二阶段:使用声谱图和人工智能的制造监控系统
- 批准号:
2335395 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
- 批准号:
2334510 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase I: Artificial Gravity Stabilization System for Space Habitats
SBIR 第一阶段:太空栖息地人工重力稳定系统
- 批准号:
2335173 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase I: VoxCare: Artificial Intelligence-based Monitoring for Substance Use Indicators in Youth
SBIR 第一阶段:VoxCare:基于人工智能的青少年药物使用指标监测
- 批准号:
2335605 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase I: An Artificial Intelligence System to Accelerate Semiconductor Production using Physics-embedded Lithographic Foundation Model
SBIR 第一阶段:使用物理嵌入式光刻基础模型加速半导体生产的人工智能系统
- 批准号:
2336079 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase I: Development of novel artificial intelligence (AI)-enabled, non-invasive, heart attack diagnostics
SBIR 第一阶段:开发新型人工智能 (AI) 支持的非侵入性心脏病诊断
- 批准号:
2208248 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase II: Arctic Environmental Modeling with Augmentation and Curation from an Artificial Intelligence Engine
SBIR 第二阶段:通过人工智能引擎进行增强和管理的北极环境建模
- 批准号:
2213136 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Artificial Intelligence (AI)-enabled Personalized Employability Curriculum (APEC)
SBIR 第一阶段:人工智能 (AI) 支持的个性化就业能力课程 (APEC)
- 批准号:
2230864 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
SBIR 第二阶段:用于加密现实世界数据和开发人工智能以优化药房预授权的区块链生态系统
- 批准号:
2200163 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Artificial intelligence powered optical spectrometer technology for farm-level milk testing
SBIR 第二阶段:用于农场级牛奶检测的人工智能驱动的光学光谱仪技术
- 批准号:
2233881 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Cooperative Agreement