Determination of Morphology Effects on Bubble Nucleation and Growth in Micro/Nano Structured Surface Layers for High Performance Boiling Processes

高性能沸腾过程微/纳米结构化表面层中气泡成核和生长的形态影响的测定

基本信息

  • 批准号:
    2228373
  • 负责人:
  • 金额:
    $ 37.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Thermal management is important for electronics, two phase pumped loop cooling systems for aerospace applications, vaporization processes in building energy systems, and Rankine cycle power plants. Development of micro/nano structured enhanced boiling heat transfer surfaces has typically been motivated by a desire to create vaporization process technologies that can handle high heat fluxes at low to moderate driving temperature difference to boost the energy efficiency and performance. Recent research on enhanced boiling surfaces has provided only a limited understanding of how the morphology of a micro/nano structured surface affects conditions of embryo bubble growth under superheated conditions, and has provided limited modeling capability that can be used to predict the dependence of heterogeneous nucleation on morphology and guide development of enhanced boiling surfaces. The research in this project develops two innovative ways to predict how morphology affects nucleation performance in micro/nano porous enhanced boiling surfaces. A machine-learning approach will be used to predict nucleation performance from learned trends in surface-feature and nucleation-performance data. The second will be a multiphase thermophysics model developed specifically to accurately predict onset of nanobubble nucleation and growth in nanoporous structures. These complementary models will both better illuminate the physics of the boiling process and can be used to guide development of next generation high-efficiency boiling surfaces for a variety of applications.The major goals of this research are to develop and evaluate two novel ways to predict the effects of surface morphology on the onset of nucleation and bubble growth in micro/nano porous layers of the type used for enhanced boiling surfaces. In one of two primary research threads, surface micrograph image analysis data will be combined with nucleation performance data for the corresponding surface, and the composite data will be used to train a neural network model that can predict the number density of active nucleation sites given the surface superheat temperature and the surface number density of features with the right combinations of low complexity (low surface image entropy) and above average feature size in the micro/nano structured layer. A second thread of this research will develop and evaluate a specialized 3D Lattice-Boltzmann multiphase simulation framework that will more accurately model micro/nano embryo bubble stability and growth in close proximity to micro/nano surface structures. The intellectual merit of the proposed research is that combining and comparing these two innovative strategies will provide a better understanding of the physics of nucleation in these circumstances, and will provide two complementary methods to guide the choice of micro/nano surface features for the design of optimized next-generation micro/nano-structured enhanced boiling surfaces for important applications. Both of these approaches can also be extended to ways of quantifying surface feature characteristics and predicting morphology effects in other phase change processes such as dropwise condensation, sublimation deposition, and thin liquid film melting and vaporization in laser processing of materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
热管理对于电子设备、用于航空航天应用的两相泵送回路冷却系统、建筑能源系统中的蒸发过程以及朗肯循环发电厂是重要的。微/纳米结构的增强沸腾传热表面的开发通常是由于期望产生可以在低至中等驱动温差下处理高热通量以提高能量效率和性能的汽化工艺技术。 最近的研究增强沸腾表面提供了一个有限的理解,如何微/纳米结构表面的形态影响条件下的过热条件下的胚胎气泡生长,并提供了有限的建模能力,可用于预测形态的异质成核的依赖性和指导发展的增强沸腾表面。 该项目的研究开发了两种创新方法来预测形态如何影响微/纳米多孔强化沸腾表面的成核性能。 机器学习方法将用于从表面特征和成核性能数据中的学习趋势预测成核性能。 第二个将是专门开发的多相热物理模型,以准确预测纳米多孔结构中纳米气泡成核和生长的发生。 这些互补的模型将更好地阐明沸腾过程的物理学,并可用于指导下一代高效沸腾表面的各种应用的发展,本研究的主要目标是开发和评估两种新的方法来预测表面形态的影响,用于增强沸腾表面的类型的微/纳米多孔层的成核和气泡生长的开始。 在两个主要研究主题之一中,表面显微图像分析数据将与相应表面的成核性能数据相结合,并且复合数据将被用于训练神经网络模型,该神经网络模型可以在给定表面温度和具有低复杂性的正确组合的特征的表面数密度的情况下预测活性成核位点的数密度(低表面图像熵)和高于微/纳米结构化层中的平均特征尺寸。这项研究的第二个线程将开发和评估一个专门的3D格子玻尔兹曼多相模拟框架,该框架将更准确地模拟微/纳米胚胎气泡的稳定性和接近微/纳米表面结构的生长。 所提出的研究的智力价值是,结合和比较这两种创新策略将提供更好地理解在这些情况下的成核物理,并将提供两种互补的方法来指导微/纳米表面特征的选择,用于设计优化的下一代微/纳米结构的增强沸腾表面的重要应用。 这两种方法也可以扩展到量化表面特征特性和预测其他相变过程中的形态效应的方法,例如滴状冷凝,升华沉积,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Use of A Genetic Algorithm to Model the Interaction of Conduction and Nucleate Boiling Mechanisms During Evaporation of Water Droplets on Superheated ZnO Nanostructured Surfaces, paper HT2023-107422
使用遗传算法模拟过热 ZnO 纳米结构表面上水滴蒸发过程中传导和核沸腾机制的相互作用,论文 HT2023-107422
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Van Carey其他文献

Van Carey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Van Carey', 18)}}的其他基金

I-Corps: Space Kinetic
I军团:太空动力学
  • 批准号:
    2226124
  • 财政年份:
    2022
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Standard Grant
Molecular Dynamics Exploration of the Effects of Dissolved Ionic Additives on Interfacial Region Structure and Heat and Mass Transfer in Thin Liquid Films
溶解离子添加剂对薄液膜界面区域结构和传热传质影响的分子动力学探索
  • 批准号:
    0456982
  • 财政年份:
    2005
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Standard Grant
Engineering Foundation Conference: Heat Transfer and Transport Phenomena in Microsystems
工程基础会议:微系统中的传热和传输现象
  • 批准号:
    0075922
  • 财政年份:
    2000
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Standard Grant
Annular-Mist Flow Transport With Phase Change in Complex Fin-Matrix Passages
复杂翅片基质通道中相变的环形雾流传输
  • 批准号:
    9024862
  • 财政年份:
    1991
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Standard Grant
PYI Award: Studies of Convective Boiling in Compact Heat Exchanger Geometrics and Mixed Convection Heat Transfer
PYI 奖:紧凑型换热器几何结构中的对流沸腾和混合对流换热研究
  • 批准号:
    8451781
  • 财政年份:
    1985
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Standard Grant
Research Initiation: Boiling Transport in an Unconfined Thin Porous Layer
研究启动:无约束薄多孔层中的沸腾传输
  • 批准号:
    8307212
  • 财政年份:
    1983
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
  • 批准号:
    2412046
  • 财政年份:
    2024
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Standard Grant
Mapping and prediction of quantitative transcription factor dosage effects to understand variation in craniofacial morphology and disease
定量转录因子剂量效应的绘图和预测,以了解颅面形态和疾病的变化
  • 批准号:
    10641572
  • 财政年份:
    2023
  • 资助金额:
    $ 37.62万
  • 项目类别:
Imaging the effects of microvascular network morphology on neurovascular coupling
成像微血管网络形态对神经血管耦合的影响
  • 批准号:
    RGPIN-2020-06590
  • 财政年份:
    2022
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Discovery Grants Program - Individual
Exercise effects on adipose tissue morphology, metabolic function, and metabolic health with weight loss and weight regain in obesity
运动对肥胖患者体重减轻和体重恢复的脂肪组织形态、代谢功能和代谢健康的影响
  • 批准号:
    10535669
  • 财政年份:
    2022
  • 资助金额:
    $ 37.62万
  • 项目类别:
Exercise effects on adipose tissue morphology, metabolic function, and metabolic health with weight loss and weight regain in obesity
运动对肥胖患者体重减轻和体重恢复的脂肪组织形态、代谢功能和代谢健康的影响
  • 批准号:
    10775266
  • 财政年份:
    2022
  • 资助金额:
    $ 37.62万
  • 项目类别:
Exercise effects on adipose tissue morphology, metabolic function, and metabolic health with weight loss and weight regain in obesity
运动对肥胖患者体重减轻和体重恢复的脂肪组织形态、代谢功能和代谢健康的影响
  • 批准号:
    10684756
  • 财政年份:
    2022
  • 资助金额:
    $ 37.62万
  • 项目类别:
Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
  • 批准号:
    2107690
  • 财政年份:
    2021
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Standard Grant
Evaluating the effects of lateral confinement on braided river morphology
评估横向限制对辫状河形态的影响
  • 批准号:
    565866-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
EAR-PF: Investigating the effects of bedrock dip angle on knickpoint morphology and evolution via flume experimentation and numerical modeling
EAR-PF:通过水槽实验和数值模拟研究基岩倾角对小点形态和演化的影响
  • 批准号:
    2052790
  • 财政年份:
    2021
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Fellowship Award
The Effects of Driving Force, Morphology and Anion Separation on Carrier Mobility in Doped Conjugated Polymers
驱动力、形态和阴离子分离对掺杂共轭聚合物中载流子迁移率的影响
  • 批准号:
    2105896
  • 财政年份:
    2021
  • 资助金额:
    $ 37.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了