Collaborative Research: Digital Twin Predictive Reliability Modeling of Solid-State Transformers
合作研究:固态变压器的数字孪生预测可靠性建模
基本信息
- 批准号:2228873
- 负责人:
- 金额:$ 24.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Solid state transformer (SST) is deemed as a revolutionary technology for future power systems. It is much more compact than the conventional electromagnetic transformer, with significant advantages of controllability both in power flow control and power quality regulation. However, one major technical barrier that constrains the practicality of SST is the low reliability compared to the conventional transformers. This is due to the large device count including semiconductor transistors, auxiliary circuits, and passive components. Currently, the reliability of SST has received little attention, which constrains their commercialization and adoption by industry. This project will develop data-driven digital twin models for SSTs that will facilitate prediction of component degradation and prevention of catastrophic failures. This is aimed to significantly improve the reliability of SSTs for safety-critical applications, such as future power systems and electrified transportation applications. The proposed modeling and design methods will result in new classes of power electronics design tools and will enable a fully integrated design process that will generate new topologies and save substantial design and implementation time. Further, these approaches will enhance reliability modeling where reliability can be accurately estimated from at design stage even for newly synthesized architectures. Regarding educational impact, this work presents an opportunity to apply artificial intelligence to power electronics engineering. Hence, the outcome of the project will upgrade power electronics teaching curricula and provide students with an effective skillset for future power engineering.To address the challenge of reliability of SSTs, this project will develop a comprehensive systematic framework of online health monitoring for SSTs to significantly improve the reliability in the face of electric faults. The proposed health monitoring framework will include online prognosis and diagnosis of potential electrical faults that SSTs could be subject to, targeting common semiconductor switching faults and health degradation in high-frequency transformers. Specifically, a portfolio of critical SST parameters will be monitored through a smart gate driver that will be integrated with the power electronic building blocks, so degradation in the semiconductor modules can be predicted and diagnosed during the fault inception stage. A novel data-driven digital twin approach is proposed to predict the behavior of the SST converter modules and it will compute health performance indices to make the technique more computationally efficient compared to full physical model computations. Fast online diagnostic algorithm will be developed and embedded in the SST microcontroller, so a fault can be identified and characterized, to minimize downtime cost and avoid cascading failures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
固态Transformer(SST)被认为是未来电力系统的革命性技术。它比传统的电磁式Transformer结构紧凑,在潮流控制和电能质量调节方面具有显著的可控性优势。然而,限制SST实用性的一个主要技术障碍是与传统变压器相比可靠性低。这是由于包括半导体晶体管、辅助电路和无源元件在内的大量器件。目前,SST的可靠性很少受到关注,这限制了其商业化和工业采用。该项目将为SST开发数据驱动的数字孪生模型,这将有助于预测组件退化和预防灾难性故障。这旨在显著提高SST在安全关键应用中的可靠性,例如未来的电力系统和电气化运输应用。提出的建模和设计方法将导致新的电力电子设计工具,并将使一个完全集成的设计过程,将产生新的拓扑结构,节省大量的设计和实施时间。此外,这些方法将增强可靠性建模,即使是新合成的架构,也可以在设计阶段准确地估计可靠性。关于教育影响,这项工作提供了一个机会,将人工智能应用于电力电子工程。因此,本项目的成果将提升电力电子教学课程,并为学生提供未来电力工程的有效技能。为了应对SST的可靠性挑战,本项目将开发一个全面的SST在线健康监测系统框架,以显着提高面对电气故障的可靠性。拟议的健康监测框架将包括在线预测和诊断SST可能遇到的潜在电气故障,针对常见的半导体开关故障和高频变压器的健康退化。具体而言,将通过与电力电子构建模块集成的智能栅极驱动器来监控关键SST参数的组合,因此可以在故障初始阶段预测和诊断半导体模块的退化。提出了一种新的数据驱动数字孪生方法来预测SST转换器模块的行为,并且它将计算健康性能指标,以使该技术与完整物理模型计算相比在计算上更高效。快速在线诊断算法将被开发并嵌入SST微控制器中,因此可以识别和描述故障,以最大限度地减少停机成本并避免级联故障。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammed Agamy其他文献
Circuit Dynamics Prediction via Graph Neural Network & Graph Framework Integration: Three Phase Inverter Case Study
通过图神经网络进行电路动力学预测
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.8
- 作者:
Ahmed K. Khamis;Mohammed Agamy - 通讯作者:
Mohammed Agamy
Circuit topology aware GNN-based multi-variable model for DC-DC converters dynamics prediction in CCM and DCM
- DOI:
10.1007/s00521-024-10293-0 - 发表时间:
2024-08-16 - 期刊:
- 影响因子:4.500
- 作者:
Ahmed K. Khamis;Mohammed Agamy - 通讯作者:
Mohammed Agamy
Mohammed Agamy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335568 - 财政年份:2024
- 资助金额:
$ 24.05万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335569 - 财政年份:2024
- 资助金额:
$ 24.05万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301410 - 财政年份:2024
- 资助金额:
$ 24.05万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301405 - 财政年份:2024
- 资助金额:
$ 24.05万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 24.05万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335570 - 财政年份:2024
- 资助金额:
$ 24.05万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301408 - 财政年份:2024
- 资助金额:
$ 24.05万 - 项目类别:
Continuing Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301409 - 财政年份:2024
- 资助金额:
$ 24.05万 - 项目类别:
Continuing Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301407 - 财政年份:2024
- 资助金额:
$ 24.05万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
- 批准号:
2301406 - 财政年份:2024
- 资助金额:
$ 24.05万 - 项目类别:
Continuing Grant