Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning

合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架

基本信息

  • 批准号:
    2228990
  • 负责人:
  • 金额:
    $ 27.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The coexistence of satellite constellations with ground-based astronomy is a growing challenge with the increase in the number of radio transmitters. One cosmological signal of extreme importance to astronomers is the 21 cm “spin flip” transition, indicating the presence of neutral hydrogen in the cosmos. This signal is emitted at 1420 MHz but received at a range of lower frequencies from very distant galaxies due to cosmological redshift. Detecting this weak signal can be difficult in the presence of interference from human-generated radio-frequency transmissions for wireless communications. This research project will use machine learning algorithms to better detect and mitigate such interference, which will enable detection of neutral hydrogen in the very early universe. Undergraduate students will participate in all aspects of this program, providing them with hands-on experience in key issues of spectrum management, space situational awareness, and machine learning algorithms. Radio frequency interference (RFI) from satellite constellations poses a critical threat to observational radio astronomy experiments seeking to detect the 21 cm signal of neutral hydrogen across cosmic time. These highly sensitive experiments must integrate over a thousand hours to detect the redshifted 21 cm signal; even very faint RFI becomes a significant contaminant at these extreme sensitivities. Currently, no single RFI detection technique can effectively identify both very bright and very faint RFI (which can differ by as much as six orders of magnitude in signal strength). This research team will develop a weakly supervised machine learning framework that uses existing RFI detection techniques to create a self-consistent flagging strategy suitable for all events, from bright transmitters down to faint reflections of terrestrial signals off CubeSats.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着无线电发射机数量的增加,卫星星座与地面天文学的共存是一个越来越大的挑战。对天文学家来说,一个极其重要的宇宙学信号是21厘米的“自旋翻转”跃迁,表明宇宙中存在中性氢。这个信号以1420mhz的频率发射,但由于宇宙红移,从非常遥远的星系接收到的信号频率较低。在人为产生的无线通信射频传输干扰存在的情况下,检测这种微弱信号可能很困难。该研究项目将使用机器学习算法来更好地检测和减轻这种干扰,这将使在早期宇宙中检测中性氢成为可能。本科生将参与该计划的各个方面,为他们提供频谱管理、空间态势感知和机器学习算法等关键问题的实践经验。来自卫星星座的无线电频率干扰(RFI)对射电天文学观测实验构成了严重威胁,这些实验试图探测到跨越宇宙时间的21厘米中性氢信号。这些高灵敏度的实验必须集成1000多个小时才能检测到红移21厘米的信号;在这些极端的灵敏度下,即使是非常微弱的射频信号也会成为一种重要的污染物。目前,没有一种单一的RFI检测技术可以有效地识别非常明亮和非常微弱的RFI(其信号强度可能相差多达六个数量级)。该研究团队将开发一种弱监督机器学习框架,该框架使用现有的RFI检测技术来创建一种自一致的标记策略,适用于所有事件,从明亮的发射机到立方体卫星地面信号的微弱反射。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bryna Hazelton其他文献

Bryna Hazelton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bryna Hazelton', 18)}}的其他基金

Collaborative Research: Elements: Software: Accelerating Discovery of the First Stars through a Robust Software Testing Infrastructure
协作研究:要素:软件:通过强大的软件测试基础设施加速第一批恒星的发现
  • 批准号:
    1835421
  • 财政年份:
    2018
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
  • 批准号:
    2332722
  • 财政年份:
    2024
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
  • 批准号:
    2332721
  • 财政年份:
    2024
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332662
  • 财政年份:
    2024
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229471
  • 财政年份:
    2023
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229473
  • 财政年份:
    2023
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Facilitating Novel Modalities for Spectrum Sharing between Earth-Observing Microwave Radiometers and Commercial Users
合作研究:SWIFT:促进地球观测微波辐射计和商业用户之间频谱共享的新模式
  • 批准号:
    2229103
  • 财政年份:
    2023
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Nonlinear and Inseparable Radar And Data (NIRAD) Transmission Framework for Pareto Efficient Spectrum Access in Future Wireless Networks
合作研究:SWIFT:未来无线网络中帕累托高效频谱接入的非线性不可分离雷达和数据 (NIRAD) 传输框架
  • 批准号:
    2348826
  • 财政年份:
    2023
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
  • 批准号:
    2414946
  • 财政年份:
    2023
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Facilitating Novel Modalities for Spectrum Sharing between Earth-Observing Microwave Radiometers and Commercial Users
合作研究:SWIFT:促进地球观测微波辐射计和商业用户之间频谱共享的新模式
  • 批准号:
    2229104
  • 财政年份:
    2023
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了