FMRG: Cyber: Scalable Precision Manufacturing of Programmable Polymer Nanoparticles Using Low-temperature Initiated Chemical Vapor Deposition Guided by Artificial Intelligence

FMRG:网络:利用人工智能引导的低温引发化学气相沉积进行可编程聚合物纳米粒子的可扩展精密制造

基本信息

  • 批准号:
    2229092
  • 负责人:
  • 金额:
    $ 300万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Polymer nanoparticles have a broad range of significant applications, including drug delivery, soft robotics and nanomedicine, etc. However, existing manufacturing of such materials are limited by batch production, quality variability and a narrow range of particle functionality, resulting in a slow development cycle, often decade long, for new materials, recipes, and use at scale. To enable a future technology in manufacturing versatile polymer nanoparticles, it is necessary to radically change such a paradigm into one that enables data-driven decision-making for processing conditions. This unique future manufacturing research grant (FMRG) will advance fundamental research in the principles for continuous and highly reproducible manufacturing of polymer nanoparticles with an expanded palette of sizes, shapes and chemical functionalities for wide-ranging applications in various industries. The new paradigm for the studied cyber-manufacturing of polymer nanoparticles will be achieved through critical breakthroughs in chemical-vapor-deposition based continuous synthesis and in-line characterization of polymeric nanostructures, integrated using artificial intelligence (AI)-guided selections of complex processing conditions. This research, if successful, will unlock vast design space for future nanomedicine, with a potential to substantially impact the healthcare industry and improve the quality of life of the society by and large. Moreover, to prepare a diverse workforce for future manufacturing advancements, rigorous education research across an academic lifespan, from K-12 outreach to undergraduate and graduate education, as well as industry engagements, the team will establish a framework to understand identity-based motivation, which may in turn lead to broadened participation in STEM.The overall goal of this future manufacturing research is to develop and investigate a novel paradigm to revolutionize manufacturing of polymer nanomaterials by integrating continuous processing, in-line characterization and AI-enabled accelerated data analysis to guide the production of programmed polymer nanoparticles. The core of this future manufacturing technology, also the key innovation, is a low-temperature initiated chemical vapor deposition (iCVD) polymerization with the use of gradient-surface-templated liquid crystals, which will leave optical fingerprints of fabricated features (spatial and temporal) that can be utilized for precision computer-vision image and data acquisitions. The high-throughput experimental data will be employed to train a convolutional neural network to identify the size, shape and chemistry of polymer particles. The neural network will be further tested with separate data sets for validations to achieve AI-accelerated analytics and processing decision making. The outcome of the interdisciplinary research will generate new knowledge in iCVD, processing monitoring and mechanism using cyber-driven approaches. The findings are expected to enable the novel manufacturing technology, scalable and modular, for unprecedented polymer structures, unachievable by traditional manufacturing means.This FMRG is supported by the Divisions of Civil, Mechanical and Manufacturing Innovation (ENG/CMMI), Mathematical Sciences (MPS/DMS), Chemistry (MPS/CHE), Engineering Education and Centers (ENG/EEC), and the Division of Undergraduate Education (EHR/DUE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
聚合物纳米粒子具有广泛的重要应用,包括药物输送、软机器人和纳米医学等。然而,此类材料的现有制造受到批量生产、质量变化性和粒子功能范围狭窄的限制,导致新材料、配方和规模化使用的开发周期缓慢,往往长达十年。为了使制造多功能聚合物纳米颗粒的未来技术成为可能,有必要从根本上改变这种范例,使其能够对加工条件进行数据驱动的决策。这一独特的未来制造研究基金(FMRG)将推进聚合物纳米粒子连续和高度可重复制造原理的基础研究,该纳米粒子具有更大的尺寸、形状和化学功能,可在不同行业中广泛应用。所研究的聚合物纳米颗粒网络制造的新范式将通过在基于化学气相沉积的连续合成和在线表征聚合物纳米结构方面取得关键突破,利用人工智能(AI)指导的复杂工艺条件选择进行集成。这项研究如果成功,将为未来的纳米医学打开巨大的设计空间,有可能对医疗保健行业产生重大影响,并从总体上提高社会的生活质量。此外,为了为未来的制造业进步、从K-12扩展到本科生和研究生教育以及行业参与的学术生涯培养一支多样化的劳动力队伍,该团队将建立一个框架,以理解基于身份的动机,这可能反过来导致更广泛的参与STEM。这项未来制造研究的总体目标是开发和研究一种新的范式,通过集成连续加工、在线表征和支持人工智能的加速数据分析来指导编程聚合物纳米粒子的生产,从而彻底改变聚合物纳米材料的制造。这项未来制造技术的核心,也是关键创新,是使用梯度表面模板液晶的低温引发化学气相沉积(ICVD)聚合,这将留下可用于精确计算机视觉图像和数据采集的制造特征(空间和时间)的光学指纹。高通量的实验数据将被用来训练卷积神经网络,以识别聚合物颗粒的尺寸、形状和化学成分。神经网络将使用单独的数据集进行进一步测试,以进行验证,以实现人工智能加速的分析和处理决策。跨学科研究的结果将产生关于ICVD、加工监测和使用网络驱动的方法的机制的新知识。这些发现有望为前所未有的聚合物结构提供可扩展和模块化的新型制造技术,这是传统制造方法无法实现的。FMRG得到了土木工程、机械和制造创新(ENG/CMMI)、数学科学(MPS/DMS)、化学(MPS/CHE)、工程教育和中心(ENG/EEC)和本科生教育部门(EHR/DUE)的支持。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rong Yang其他文献

The impact of communication training on the clinical care of hypertension in general practice: a cluster randomized controlled trial in China
沟通训练对全科高血压临床护理的影响:中国的一项整群随机对照试验
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuan Zou;Lili Deng;Jianzhao Luo;Hua Dai;Yu Zhang;Ru Guo;Xiaolu Luo;Rong Yang;Haiqi Song;John Spicer;Qian Zhao;Xiaoyang Liao
  • 通讯作者:
    Xiaoyang Liao
Design optimization of a global/local tone mapping processor on arm SOC platform for real-time high dynamic range video
Arm SOC 平台上用于实时高动态范围视频的全局/局部色调映射处理器的设计优化
土槿皮的化学成分研究(英文)
Catalyst-free growth of nanographene film on various substrates
纳米石墨烯薄膜在各种基底上的无催化剂生长
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Lianchang Zhang;Zhiwen Shi;Yi Wang;Rong Yang;Dongxia Shi;Guangyu Zhang
  • 通讯作者:
    Guangyu Zhang
Human Adversaries in Security Games: Integrating Models of Bounded Rationality and Fast Algorithms
安全游戏中的人类对手:有限理性模型和快速算法的集成
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rong Yang
  • 通讯作者:
    Rong Yang

Rong Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rong Yang', 18)}}的其他基金

CAREER: Solvent-Free Synthesis of Polymeric Nanostructures with Targeted Properties
职业:无溶剂合成具有目标性能的聚合物纳米结构
  • 批准号:
    2144171
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Continuing Grant

相似国自然基金

Cyber体系脆弱性仿真分析方法研究
  • 批准号:
    61403400
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于复杂网络理论的Cyber体系效能仿真分析方法研究
  • 批准号:
    61374179
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Cyber攻击对国家关键基础设施级联失效影响建模仿真研究
  • 批准号:
    61174035
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于Cyber空间的体系脆弱性仿真分析方法研究
  • 批准号:
    61174156
  • 批准年份:
    2011
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
  • 批准号:
    2313738
  • 财政年份:
    2023
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Fingerprinting and Big Data Security Analytics for the Scalable Generation of Cyber Threat Intelligence
用于可扩展生成网络威胁情报的指纹识别和大数据安全分析
  • 批准号:
    RGPIN-2017-06650
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable Cyber-Physical-Human Systems for Intelligent and Interactive Buildings
适用于智能交互式建筑的可扩展网络物理人类系统
  • 批准号:
    DGECR-2022-00506
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Launch Supplement
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
  • 批准号:
    2212256
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Standard Grant
Scalable Cyber-Physical-Human Systems for Intelligent and Interactive Buildings
适用于智能交互式建筑的可扩展网络物理人类系统
  • 批准号:
    RGPIN-2022-04453
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Grants Program - Individual
Practical, Efficient and Scalable Modeling, Verification and Validation of Safety-Critical Cyber-Physical Systems
安全关键网络物理系统的实用、高效和可扩展的建模、验证和确认
  • 批准号:
    RGPIN-2020-06751
  • 财政年份:
    2022
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Grants Program - Individual
WELD: Integrated Cyber-Infrastructure for Scalable Data-Driven Research into COVID-19
WELD:用于可扩展数据驱动的 COVID-19 研究的集成网络基础设施
  • 批准号:
    EP/W015153/1
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Research Grant
Practical, Efficient and Scalable Modeling, Verification and Validation of Safety-Critical Cyber-Physical Systems
安全关键网络物理系统的实用、高效和可扩展的建模、验证和确认
  • 批准号:
    RGPIN-2020-06751
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Grants Program - Individual
Fingerprinting and Big Data Security Analytics for the Scalable Generation of Cyber Threat Intelligence
用于可扩展生成网络威胁情报的指纹识别和大数据安全分析
  • 批准号:
    RGPIN-2017-06650
  • 财政年份:
    2021
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Grants Program - Individual
Practical, Efficient and Scalable Modeling, Verification and Validation of Safety-Critical Cyber-Physical Systems
安全关键网络物理系统的实用、高效和可扩展的建模、验证和确认
  • 批准号:
    RGPIN-2020-06751
  • 财政年份:
    2020
  • 资助金额:
    $ 300万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了