RII Track4: FAST Heat Transfer Enhancement of Cold Plates using Vortex Generators
RII Track4:使用涡流发生器快速增强冷板传热
基本信息
- 批准号:2229434
- 负责人:
- 金额:$ 17.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rapid development of technology has resulted in higher performance and smaller size in electronics. With the improvement of circuit density and faster operating frequency, more heat is dissipated by the electronics. Due to the considerable increase in heat dissipation, traditional heat removal system employing heat sink and fan often becomes insufficient for the modern electronics to maintain within the operating temperature. Therefore, this research is driven by the need to develop an advanced thermal management system to remove the dissipated heat sufficiently and maintain the electronics below the operating temperature for better performance and high reliability. Through the collaboration with the NASA Johnson Space Center, an advanced cold plate heat exchanger will be designed and developed in this project. This development will result in the ability to remove heat more efficiently and effectively by using vortex generators (VGs), especially for the electronics in human spacecraft. When better liquid cooling in cold plates is achieved, it can lead to significant energy savings as well as the reduction of the equipment size and weight. Eventually, this research can support the design, development, and implementation of the next generation of thermal management systems for the electronics in spacecraft applications. Cold plates have liquid coolant flow passages bounded by metallic walls. The use of vortex generators (VGs) in the flow passages has a great potential to enhance heat transfer while minimizing the weight and pressure drop penalties. Therefore, the objective of this research is to show that the multiscale vortex structures induced by microscale VGs can transfer and transport thermal energy more efficiently and effectively in cold plates. Specifically, this research project will include 1) development of an advanced cold plate heat exchanger using multiple micro-VGs, 2) investigation of the effects of the vortical structures induced by micro-VGs on convective heat transfer, and 3) optimization of the liquid coolant flow passages with specific emphasis on cold plates in human spacecraft. It is expected that the vortical flows induced by micro-VGs will disrupt the hydraulic/thermal boundary layers and will promote the flow instabilities and the formation of secondary coherent structures that govern meso- and micro-mixing mechanisms. For thermal analysis, fluid temperature, thermal efficiency, Nusselt number, and convection heat transfer coefficient will be evaluated experimentally. The local surface temperature distributions of the cold plate will also be measured using infrared (IR) thermography. Furthermore, the coolant flow passage configurations will be modified based on the experimental results to achieve the uniform temperature distributions reducing the locally concentrated heat spots. Eventually, success of this research project will lead to the thermal performance enhancement of cold plates, thereby reducing of the equipment size/weight and saving energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的快速发展导致了电子产品的更高性能和更小尺寸。随着电路密度的提高和更快的工作频率,更多的热量被电子器件耗散。由于散热量的显著增加,采用散热器和风扇的传统散热系统通常不足以使现代电子设备保持在工作温度内。因此,这项研究是由需要开发一个先进的热管理系统,以消除散热充分,并保持电子低于工作温度,以获得更好的性能和高可靠性。通过与美国宇航局约翰逊航天中心的合作,本项目将设计和开发一种先进的冷板换热器。这一发展将导致通过使用涡流发生器(VG)更有效地去除热量的能力,特别是对于人类航天器中的电子设备。当在冷板中实现更好的液体冷却时,它可以导致显著的节能以及设备尺寸和重量的减小。最终,这项研究可以支持航天器应用中电子设备的下一代热管理系统的设计,开发和实施。冷板具有由金属壁界定的液体冷却剂流动通道。在流道中使用涡流发生器(VG)具有很大的潜力,可以增强传热,同时最大限度地减少重量和压降损失。因此,本研究的目的是表明,多尺度涡结构诱导的微尺度涡可以更有效地传递和传输热能在冷板。具体而言,该研究项目将包括1)使用多个微型VG开发先进的冷板热交换器,2)调查由微型VG引起的涡流结构对对流传热的影响,以及3)优化液体冷却剂流动通道,特别强调人类航天器中的冷板。预计由微型涡流发生器引起的涡流将破坏水力/热力边界层,并将促进流动不稳定性和形成控制中微观混合机制的二次相干结构。对于热分析,将通过实验评估流体温度、热效率、努塞尔数和对流传热系数。还将使用红外(IR)热成像测量冷板的局部表面温度分布。此外,冷却剂流动通道的配置将根据实验结果进行修改,以实现均匀的温度分布,减少局部集中的热点。最终,该研究项目的成功将导致冷板的热性能增强,从而减少设备的尺寸/重量和节省能源。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeongmoon Park其他文献
Jeongmoon Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}














{{item.name}}会员




