Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce

协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程

基本信息

  • 批准号:
    2230609
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

Artificial Intelligence (AI) and Machine Learning (ML) techniques can bolster cybersecurity by aiding security administrators in detecting suspicious behaviors and initiating responses to threats. However, AL/ML technology remains susceptible to malicious exploitation, potentially leading to unintended outcomes. Therefore, it is important to ensure that AI-based decision processes are reliable in critical operational systems when facing adversarial situations. As deep learning (DL) and other AI/ML algorithms become integrated into operational systems, it is essential to defend security, privacy, and fairness of AI/ML against adversaries. This can be achieved by implementing more robust ML methods such as AI reconnaissance prevention, analysis of adversarial models, model poisoning prevention, and secure training procedures. By equipping students with the knowledge needed to secure AI in malware analysis applications, this project will foster growth of next-generation cybersecurity talent. This project will research and develop self-contained course modules focused on Adversarial Machine Learning (AML) within the context of malware analysis applications, which will transit cutting-edge research topics into the teaching and learning process. The goal of these modules is to develop students at Tennessee Tech University (TTU) and North Carolina Agricultural and Technical State University (NCAT) with specialized knowledge in this area. Course modules will include adversarial malware generation, robustness of file structure against random perturbation, poisoning attack and defense, white-box evasion attack, and surrogate model construction. The AML cyber modules will be integrated into different non-security courses such as AI/ML or data science or provided as an independent cybersecurity course. Students will acquire practical and conceptual knowledge by engaging with different AI/ML techniques for security solutions pertinent to the malware analysis domain. Additionally, students will develop advanced skills necessary for safeguarding AI systems. The interdisciplinary team, composed of experts in cybersecurity, artificial intelligence, and education, will utilize a guiding conceptual framework to strategically develop cybersecurity education modules. They will investigate the impact of these modules on learning outcomes, while refining pedagogical strategies to promote diversity and inclusion in cybersecurity education. Developed modules, instructional materials, and tutorial activities will be widely available for dissemination. This project will support integration of security and education research topics to create new knowledge in cybersecurity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)和机器学习(ML)技术可以通过帮助安全管理员检测可疑行为和启动对威胁的响应来加强网络安全。然而,AL/ML技术仍然容易受到恶意利用,可能导致意想不到的结果。因此,重要的是要确保基于人工智能的决策过程在面临对抗性情况时在关键操作系统中是可靠的。随着深度学习(DL)和其他AI/ML算法被集成到操作系统中,必须保护AI/ML的安全性、隐私性和公平性。这可以通过实施更强大的ML方法来实现,例如AI侦察预防,对抗模型分析,模型中毒预防和安全训练程序。通过为学生提供在恶意软件分析应用程序中保护人工智能所需的知识,该项目将促进下一代网络安全人才的增长。该项目将在恶意软件分析应用程序的背景下研究和开发专注于对抗性机器学习(AML)的独立课程模块,这将把前沿研究课题转化为教学和学习过程。这些模块的目标是培养学生在田纳西理工大学(TTU)和北卡罗来纳州农业和技术州立大学(NCAT)在这一领域的专业知识。课程模块将包括对抗性恶意软件生成、文件结构对随机扰动的鲁棒性、中毒攻击和防御、白盒规避攻击和代理模型构建。AML网络模块将被整合到不同的非安全课程中,如AI/ML或数据科学,或作为独立的网络安全课程提供。学生将通过参与不同的AI/ML技术来获得与恶意软件分析领域相关的安全解决方案的实践和概念知识。此外,学生将开发保护AI系统所需的高级技能。由网络安全、人工智能和教育专家组成的跨学科团队将利用指导性概念框架,从战略上开发网络安全教育模块。他们将调查这些模块对学习成果的影响,同时完善教学策略,以促进网络安全教育的多样性和包容性。将广泛提供已开发的单元、教学材料和辅导活动,以供传播。该项目将支持安全和教育研究课题的整合,以创造网络安全方面的新知识。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maanak Gupta其他文献

Exploiting Windows PE Structure for Adversarial Malware Evasion Attacks
利用 Windows PE 结构进行对抗性恶意软件规避攻击
Secure Virtual Objects Communication
安全虚拟对象通信
Introduction: Requirements for Access Control in IoT and CPS
简介:物联网和 CPS 中的访问控制要求
Efficient federated transfer learning-based network anomaly detection for cooperative smart farming infrastructure
用于协作式智能农业基础设施的基于高效联邦迁移学习的网络异常检测
  • DOI:
    10.1016/j.atech.2024.100727
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Lopamudra Praharaj;Deepti Gupta;Maanak Gupta
  • 通讯作者:
    Maanak Gupta
Is there a Security Mindset and Can it be Taught?
是否存在安全心态并且可以教授吗?

Maanak Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maanak Gupta', 18)}}的其他基金

Collaborative Research: SaTC: EDU: Artificial Intelligence Assisted Malware Analysis
合作研究:SaTC:EDU:人工智能辅助恶意软件分析
  • 批准号:
    2025682
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
  • 批准号:
    2237329
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Securing Interactions between Driver and Vehicle Using Batteries
合作研究:SaTC:核心:中:使用电池确保驾驶员和车辆之间的交互安全
  • 批准号:
    2245224
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了