Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
基本信息
- 批准号:2232552
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning recommender systems personalize users’ experiences online by ranking and selecting items to present based on users’ past behavior. For example, when a user visits an online retailer, the products shown are selected by a recommender system designed to help one find things to buy and to increase the vendors sales. Recommender systems are also behind most online news sources, and they can shape which news people see. Given the importance of recommender systems to individual choice, it is critical for researchers to be able to carry out studies to evaluate different designs and their impact on the users of the system. But conducting such studies is beyond the resources of most researchers. To get meaningful results requires building and sustaining a community of willing users who have given their permission to be studied. As a result, the amount of experimental research – and specifically experimental research on long-term users of a system – has plummeted. Almost all such studies are conducted by commercial recommendation platforms and their results are rarely made known to the public. This project is designed to develop a shared news recommender system specifically to enable researchers nationwide to be able to carry out experiments and learn just how different algorithms and interfaces affect users. This should create the knowledge that will allow the community to fully understand the impact of these systems and design new recommender systems that can enhance fairness and equity. When complete, this research infrastructure will support researchers in answering critical questions about how complex and often opaque recommender systems affect user behavior and to test new systems that can improve these systems and their outcomes.This community-centered project will design and build an experimental news recommender community infrastructure to support research in personalization and recommender systems, AI and machine learning, natural language processing, human-computer interaction, social computing, and other fields that would benefit from the ability to carry out online field experiments with long-term users of a system. The cloud-based software infrastructure includes a pluggable recommendation architecture in which researchers can deploy custom algorithms and interfaces, a feed of news articles starting with those obtained through a partnership with the Associated Press, experiment-support modules including consent, payment, and surveying of subjects, and support for two news interfaces—first a news digest and then a progressive web news browser. The infrastructure will maintain a set of long-term consented users, provide extensive support to researchers including overarching IRB protocols, training, sample experiments, datasets and metrics, and live support through a researcher support team. It will be governed by a community advisory board drawn from the researcher community with representatives of the content providers and end-users and charged with allocating experiment slots and steering the development and management of the infrastructure. By developing and deploying this research infrastructure, the investigators seek to empower individuals and small groups to study important questions in recommender systems, including questions about how different algorithms and interfaces can alter the diversity of sources and viewpoints represented and provide users with greater understanding and control over the content they explore. The investigators come from five institutions spread across the country and will in turn assemble and train a diverse team to take on this technically challenging and important work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习推荐系统通过根据用户过去的行为对要呈现的项目进行排序和选择,从而在线个性化用户体验。例如,当用户访问在线零售商时,展示的产品由一个推荐系统选择,该系统旨在帮助用户找到要购买的东西,并增加供应商的销售额。推荐系统也是大多数在线新闻来源的幕后推手,它们可以塑造人们看到的新闻。鉴于推荐系统对个人选择的重要性,研究人员能够开展研究来评估不同的设计及其对系统用户的影响是至关重要的。但进行这样的研究超出了大多数研究人员的能力范围。为了获得有意义的结果,需要建立和维持一个由自愿接受研究的用户组成的社区。其结果是,实验研究的数量--特别是针对系统长期用户的实验研究--大幅下降。几乎所有这类研究都是由商业推荐平台进行的,其结果很少向公众公布。该项目旨在开发一个共享新闻推荐系统,专门让全国的研究人员能够进行实验,了解不同的算法和界面是如何影响用户的。这将创造知识,使社区能够充分了解这些系统的影响,并设计新的推荐系统,以增强公平和公平。完成后,这个研究基础设施将支持研究人员回答有关复杂且往往不透明的推荐系统如何影响用户行为的关键问题,并测试可以改进这些系统及其结果的新系统。这个以社区为中心的项目将设计和构建一个实验性新闻推荐社区基础设施,以支持个性化和推荐系统、人工智能和机器学习、自然语言处理、人机交互、社会计算和其他领域的研究,这些领域将受益于与系统的长期用户进行在线现场实验的能力。基于云的软件基础设施包括一个可插拔的推荐体系结构,研究人员可以在其中部署定制的算法和界面、从与美联社合作获得的新闻文章开始的新闻提要、包括同意、付款和主题调查在内的实验支持模块,以及对两个新闻界面的支持-首先是新闻摘要,然后是渐进式网络新闻浏览器。该基础设施将维护一组长期同意的用户,为研究人员提供广泛的支持,包括总体IRB协议、培训、样本实验、数据集和指标,以及通过研究人员支持团队提供现场支持。它将由一个来自研究人员社区的社区咨询委员会管理,该委员会由内容提供商和最终用户的代表组成,负责分配实验时段并指导基础设施的开发和管理。通过开发和部署这一研究基础设施,调查人员寻求使个人和小团体能够研究推荐系统中的重要问题,包括不同的算法和界面如何改变来源和代表的观点的多样性,并为用户提供对他们探索的内容的更好理解和控制。调查人员来自全国各地的五个机构,他们将依次组建和培训一支多样化的团队,以承担这项具有技术挑战性和重要的工作。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bart Knijnenburg其他文献
Antecedents of collective privacy management in social network sites: a cross-country analysis
- DOI:
10.1007/s42486-022-00092-8 - 发表时间:
2022-03-04 - 期刊:
- 影响因子:2.000
- 作者:
Yao Li;Hichang Cho;Reza Ghaiumy Anaraky;Bart Knijnenburg;Alfred Kobsa - 通讯作者:
Alfred Kobsa
Digital privacy education: Customized interventions for U.S. older and younger adults in rural and urban settings
数字隐私教育:针对美国城乡地区老年人和年轻人的定制干预措施
- DOI:
10.1016/j.techsoc.2024.102805 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:12.500
- 作者:
Heba Aly;Yizhou Liu;Sushmita Khan;Reza Ghaiumy Anaraky;Kaileigh Byrne;Bart Knijnenburg - 通讯作者:
Bart Knijnenburg
Bart Knijnenburg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bart Knijnenburg', 18)}}的其他基金
Characterizing Inclusive Strategies that Retain Black Students in Computer Science to Graduation and Beyond
描述保留计算机科学专业黑人学生毕业及毕业后的包容性策略
- 批准号:
2111354 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Leveraging Recommendations for Self-Actualization
职业:利用自我实现的建议
- 批准号:
2045153 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CRII: CHS: Recommender Systems for Self-Actualization
CRII:CHS:自我实现推荐系统
- 批准号:
1565809 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: Collaborative: PRICE: Using process tracing to improve household IoT users' privacy decisions
EAGER:协作:PRICE:使用流程跟踪来改善家庭物联网用户的隐私决策
- 批准号:
1640664 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
- 批准号:
2318703 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: NEW: Building a Batteryless Computing Community through Access to Education, Testbeds, and Tools
合作研究:CCRI:新:通过获得教育、测试平台和工具构建无电池计算社区
- 批准号:
2235002 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
- 批准号:
2235160 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Syntactic Differencing Infrastructure for Software Evolution Research
合作研究:CCRI:新:软件进化研究的句法差异基础设施
- 批准号:
2232594 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: CoMIC: A Collaborative Mobile Immersive Computing Research Infrastructure for Multi-user XR
协作研究:CCRI:新:CoMIC:用于多用户 XR 的协作移动沉浸式计算研究基础设施
- 批准号:
2235050 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI: New: Distributed Space and Terrestrial Networking Infrastructure for Multi-Constellation Coexistence
合作研究:研究基础设施:CCRI:新:用于多星座共存的分布式空间和地面网络基础设施
- 批准号:
2235140 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: Grand: Quori 2.0: Uniting, Broadening, and Sustaining a Research Community Around a Modular Social Robot Platform
协作研究:CCRI:盛大:Quori 2.0:围绕模块化社交机器人平台联合、扩大和维持研究社区
- 批准号:
2235042 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: Planning-C: A Community for Configurability Open Research and Development (ACCORD)
合作研究:CCRI:Planning-C:可配置性开放研究与开发社区 (ACCORD)
- 批准号:
2234909 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
- 批准号:
2232554 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant