Flow Dynamics in Buoyancy-Driven Variable-Density Turbulent Mixing with Compressibility Effects

具有压缩效应的浮力驱动变密度湍流混合中的流动动力学

基本信息

  • 批准号:
    2234415
  • 负责人:
  • 金额:
    $ 29.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

In general, complex flows - those observed in supersonic-to-hypersonic combustion and propulsion, fusion technologies, and astrophysics - involve multi-material mixing and span a broad range of space and time scales. Fluids participating in such flows have a wide range of molar masses, and in many cases, the flow is highly compressible. It is still a challenge for current engineering tools to predict the key flow physics that arise due to the compressibility and large material property variations. A stronger fundamental understanding of these effects on turbulent flows will significantly increase our ability to model the flow physics accurately, such as the rate of turbulent mixing that occurs in complex multi-material flows, and to perform numerical simulations of such flows with a decreased computational expense. These gained abilities will have a direct impact on the improvement and development of many high-tech products in the space, energy, and defense industries. Therefore, the focus of the proposed study is to quantify the coupled large molar-mass ratio and compressibility effects on the gravitationally driven turbulent flows. The project will also deliver an educational component by generating content for undergraduate- and graduate-level courses. It will also support outreach activities to promote interest in fluid dynamics and turbulence, and more broadly in STEM among local middle-school students.Multi-material turbulence has so far mostly been studied with quasi-incompressible and Boussinesq flows with small variations in material properties. The proposed project aims to describe flow compressibility effects on Rayleigh-Taylor unstable turbulent mixing with large density variations beyond the Boussinesq approximation and the incompressible assumption. Novel direct numerical simulations of buoyancy-driven flow that resolve all spatial and temporal scales will be performed at large density ratios (2) with highly compressible fluids using the adaptive mesh refinement to optimally deploy computational resources. Unique statistical tools will be developed to quantify the non-Boussinesq turbulent compressible mixing dynamics. The proposed simulations and statistical analyses will be used to establish a deeper understanding of turbulence transition for non-Boussinesq flows, and in particular, the small-scale flow topology of the compressible active-scalar mixing. In addition, the findings of this research are expected to inform new sub-grid-scale models and strategies to decrease the computational cost of the multi-physics complex fluid-flow simulations and validate the reduced-order models for these complex flows. This project is jointly funded by Fluid Dynamics program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通常,复杂的流 - 在超音速到激烈的燃烧和推进,融合技术和天体物理学中观察到的流动 - 涉及多物质混合,并跨越广泛的时空和时间尺度。参与此类流量的流体具有广泛的摩尔质量,在许多情况下,流动非常可压缩。对于当前工程工具来说,预测由于可压缩性和较大材料属性变化而产生的关键流体物理学仍然是一个挑战。对这些对湍流的影响的基本了解将显着提高我们准确地对流体物理进行建模的能力,例如在复杂的多物质流中发生的湍流混合速率,并以减少的计算费用对此类流量进行数值模拟。这些获得的能力将直接影响空间,能源和国防行业中许多高科技产品的改进和开发。因此,拟议的研究的重点是量化对重力驱动的湍流的耦合大摩尔质量比和可压缩性影响。该项目还将通过为本科和研究生级课程生成内容来提供教育组成部分。它还将支持外展活动,以促进对流体动力学和湍流的兴趣,并且在本地中学生中更广泛地在STEM中。到目前为止,多数材料的湍流主要是通过准压缩和boussinesq流的研究,其物质特性的变化很小。拟议的项目旨在描述对雷利 - 泰勒不稳定的湍流混合的流动压缩性影响,其密度变化超出了Boussinesq近似和不可压缩的假设。解决所有空间和时间尺度的浮力流动流的新型直接数值模拟将以高密度比(2)进行高度可压缩的流体,使用自适应网格细化,以最佳地部署计算资源。将开发独特的统计工具来量化非Boussinesq湍流可压缩混合动力学。所提出的模拟和统计分析将用于建立对非BoussinesQ流的湍流转变的更深入的理解,尤其是可压缩活性量表混合的小规模流量拓扑。此外,这项研究的发现有望为新的子网格规模模型和策略提供信息,以降低多物理复杂流体流量模拟的计算成本,并验证这些复杂流量的降级模型。该项目由流体动力学计划和既定的竞争研究(EPSCOR)共同资助。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct numerical simulations of compressible three-layer Rayleigh-Taylor instability
可压缩三层瑞利-泰勒不稳定性的直接数值模拟
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ustun, Orkun;Aslangil, Denis;Wong, Man Long
  • 通讯作者:
    Wong, Man Long
Investigation of strong isothermal stratification effects on multi-mode compressible Rayleigh–Taylor instability
  • DOI:
    10.1063/5.0164504
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Denis Aslangil;Man Long Wong
  • 通讯作者:
    Denis Aslangil;Man Long Wong
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denis Aslangil其他文献

F ORECASTING V ARIABLE -D ENSITY 3D T URBULENT F LOW
预测变量密度 3D 湍流
  • DOI:
    10.5194/hess-2021-614-ac3
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xingyuan Su;R. Walters;Denis Aslangil;Rose Yu
  • 通讯作者:
    Rose Yu
Coupled Effects of Iso-thermal Stratification Strength and Atwood Number on 2D Single-Mode Compressible Rayleigh-Taylor Instability
等温分层强度和阿特伍德数对二维单模可压缩瑞利-泰勒不稳定性的耦合影响
  • DOI:
    10.2514/6.2023-1044
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tyler Prine;Denis Aslangil;Man Long Wong
  • 通讯作者:
    Man Long Wong
Effects of variable deceleration periods on Rayleigh-Taylor instability with acceleration reversals.
可变减速周期对加速度反转的瑞利-泰勒不稳定性的影响。
  • DOI:
    10.1103/physreve.105.065103
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Denis Aslangil;A. Lawrie;A. Banerjee
  • 通讯作者:
    A. Banerjee
Variable-density buoyancy-driven turbulence with asymmetric initial density distribution
具有不对称初始密度分布的变密度浮力驱动湍流
  • DOI:
    10.1016/j.physd.2020.132444
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Denis Aslangil;D. Livescu;A. Banerjee
  • 通讯作者:
    A. Banerjee
Rayleigh–Taylor Instability With Varying Periods of Zero Acceleration
不同零加速周期的瑞利-泰勒不稳定性

Denis Aslangil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denis Aslangil', 18)}}的其他基金

REU Site: Fluid Mechanics with Analysis using Computations and Experiments (FM-ACE)
REU 网站:使用计算和实验进行分析的流体力学 (FM-ACE)
  • 批准号:
    2244313
  • 财政年份:
    2023
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Standard Grant

相似国自然基金

板耦合型机械排烟与竖井自然排烟协同排烟动力学演化特征研究
  • 批准号:
    51906030
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
工业车间高浓度大比重气态污染物迁移动力学机理及通风控制计算方法研究
  • 批准号:
    51908445
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
经水媒传布浮力种子动力学特性研究
  • 批准号:
    51879197
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
旋流泵内固液两相流跨尺度涡旋的演化机理及其动力学行为响应
  • 批准号:
    51609113
  • 批准年份:
    2016
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
负浮力大载荷水下潜器实现机理与动力学特性研究
  • 批准号:
    51575376
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Dynamics of ultrasonically levitated droplet and their applications to medicine
超声悬浮液滴动力学及其在医学中的应用
  • 批准号:
    23H01365
  • 财政年份:
    2023
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a ventricular assist device for improving survival rate and QOL based on dynamics of a levitating impeller
开发基于悬浮叶轮动力学的心室辅助装置,以提高生存率和生活质量
  • 批准号:
    20H02098
  • 财政年份:
    2020
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamics of granular flow with multi-scale and quantum mechanics
多尺度和量子力学颗粒流动力学
  • 批准号:
    19K21990
  • 财政年份:
    2019
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The multi-scale dynamics in granular flow considering stick-slip phenomena
考虑粘滑现象的颗粒流多尺度动力学
  • 批准号:
    17K18901
  • 财政年份:
    2017
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Applying Statistical State Dynamics to Explain Spontaneous Shear/Buoyancy Layering in Stratified Turbulence
应用统计状态动力学解释层状湍流中的自发剪切/浮力分层
  • 批准号:
    1640989
  • 财政年份:
    2017
  • 资助金额:
    $ 29.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了