Collaborative Research: CCRI: New: An Open Source Simulation Platform for AI Research on Autonomous Driving

合作研究:CCRI:新:自动驾驶人工智能研究的开源仿真平台

基本信息

  • 批准号:
    2235012
  • 负责人:
  • 金额:
    $ 96.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-15 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Autonomous driving is transforming daily life and economy, with promised benefits like safe transportation and efficient mobility. Much of today’s research on autonomous driving experiments on expensive commercial vehicles. It is costly and risky to evaluate AI and machine learning methods on physical vehicles in real world. Driving simulator provides a cost-effective and safe alternative for the development and evaluation of new AI algorithms. However, existing driving simulators with limited assets and complexity cannot accommodate the needs of the rapidly progressing AI fields. This project aims to develop an open-ended driving simulation platform that fosters innovations in various aspects of autonomous driving from perception to decision-making. This platform will support realistic driving simulation with a diverse range of traffic assets and scenarios imported from real world. It will become a common experimental ground for researchers in academia and industry to develop new AI methods, share data and models, and benchmark the progress. The platform will grow into a community research infrastructure and have significant impacts on the blooming autonomous driving industry. Additionally, it will provide interactive teaching toolkits for STEM education, particularly for students from underserved communities. In this project, investigators will develop an open-source simulation platform called MetaDriverse for AI research on autonomous driving. This platform will serve as a research infrastructure and facilitate compelling research opportunities in various disciplines, including computer vision, computer graphics, machine learning, and human-machine interaction. MetaDriverse will feature realistic visual appearance, interactive real-world scenarios and assets, and intuitive human control interface, allowing for the simulation of real-world driving experiences. It will also provide a wide range of tasks and benchmarks and the flexibility to design new ones, which will gauge the community’s collective effort and accelerate the research progress. The key features and capabilities of the platform include (i) realistic visual perception and neural rendering, (ii) interactive simulation of real-world traffic scenarios, (iii) comprehensive benchmarks and model zoo, and (iv) community’s collective effort. This infrastructure will foster a wide range of opportunities and collaborations in the autonomous driving and intelligent transportation industries and bring significant societal and economic impacts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动驾驶正在改变日常生活和经济,并带来安全运输和高效流动等好处。 今天的大部分研究都是在昂贵的商用车上进行自动驾驶实验。在真实的世界中的物理车辆上评估人工智能和机器学习方法是昂贵和危险的。驾驶模拟器为开发和评估新的AI算法提供了一种具有成本效益和安全的替代方案。然而,现有的驾驶模拟器具有有限的资产和复杂性,无法满足快速发展的人工智能领域的需求。该项目旨在开发一个开放式驾驶模拟平台,促进从感知到决策的自动驾驶各个方面的创新。该平台将支持逼真的驾驶模拟,并从真实的世界导入各种交通资产和场景。它将成为学术界和工业界研究人员开发新的人工智能方法,共享数据和模型并对进展进行基准测试的共同实验场。该平台将发展成为一个社区研究基础设施,并对蓬勃发展的自动驾驶行业产生重大影响。 此外,它还将为STEM教育提供互动式教学工具包,特别是针对来自服务不足社区的学生。在这个项目中,研究人员将开发一个名为MetaDriverse的开源模拟平台,用于自动驾驶的人工智能研究。该平台将作为研究基础设施,促进各个学科的引人注目的研究机会,包括计算机视觉,计算机图形学,机器学习和人机交互。MetaDriverse将具有逼真的视觉外观,交互式现实世界场景和资产,以及直观的人类控制界面,允许模拟现实世界的驾驶体验。它还将提供广泛的任务和基准,并灵活地设计新的任务和基准,这将衡量社区的集体努力,并加快研究进展。该平台的主要特点和功能包括(i)逼真的视觉感知和神经渲染,(ii)真实世界交通场景的交互式模拟,(iii)全面的基准和模型动物园,以及(iv)社区的集体努力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ScenarioNet: Open-Source Platform for Large-Scale Traffic Scenario Simulation and Modeling
  • DOI:
    10.48550/arxiv.2306.12241
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quanyi Li;Zhenghao Peng;Lan Feng;Zhizheng Liu;Chenda Duan;Wen-An Mo;Bolei Zhou
  • 通讯作者:
    Quanyi Li;Zhenghao Peng;Lan Feng;Zhizheng Liu;Chenda Duan;Wen-An Mo;Bolei Zhou
CAT: Closed-loop Adversarial Training for Safe End-to-End Driving
  • DOI:
    10.48550/arxiv.2310.12432
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linrui Zhang;Zhenghao Peng;Quanyi Li;Bolei Zhou
  • 通讯作者:
    Linrui Zhang;Zhenghao Peng;Quanyi Li;Bolei Zhou
Learning from Active Human Involvement through Proxy Value Propagation
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenghao Peng;Wenjie Mo;Chenda Duan;Quanyi Li;Bolei Zhou
  • 通讯作者:
    Zhenghao Peng;Wenjie Mo;Chenda Duan;Quanyi Li;Bolei Zhou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bolei Zhou其他文献

Policy Continuation and Policy Evolution with Hindsight Inverse Dynamics
事后逆向动态的政策延续和政策演变
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao Sun;Bo Dai;Zhizhong Li;Xiaotong Liu;Rui Xu;Dahua Lin;Bolei Zhou
  • 通讯作者:
    Bolei Zhou
Seeing things or seeing scenes: Investigating the capabilities of V&L models to align scene descriptions to images
看到事物或看到场景:调查 V 的能力
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matt D Anderson;Erich W Graf;James H. Elder;Peter Anderson;Xiaodong He;Chris Buehler;Mark Teney;Stephen Johnson;Gould Lei;Emily M. Bender;Timnit Gebru;Angelina McMillan;Alexander Koller. 2020;Climb;Yonatan Bisk;Ari Holtzman;Jesse Thomason;Y. Bengio;Joyce Chai;Angeliki Lazaridou;Jonathan May;Aleksandr;Thomas Unterthiner;Mostafa Dehghani;Georg Minderer;Sylvain Heigold;Jakob Gelly;Uszkoreit Neil;Houlsby. 2020;An;Lisa Anne Hendricks;Gabriel Ilharco;Rowan Zellers;Ali Farhadi;John M. Henderson;Contextual;Thomas L. Griffiths. 2021;Are Convolutional;Neu;Melissa L.;Jeremy M. Wolfe;Differen;Jianfeng Wang;Xiaowei Hu;Xiu;Roy Schwartz;Bolei Zhou;Àgata Lapedriza;Jianxiong Xiao;Hang Zhao;Xavier Puig;Sanja Fidler
  • 通讯作者:
    Sanja Fidler
Expert identification of visual primitives used by CNNs during mammogram classification
CNN 在乳房 X 光照片分类过程中使用的视觉基元的专家识别
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jimmy Wu;D. Peck;S. Hsieh;V. Dialani;C. Lehman;Bolei Zhou;Vasilis Syrgkanis;Lester W. Mackey;Genevieve Patterson
  • 通讯作者:
    Genevieve Patterson
Modeling Manifold Ways of Scene Perception
场景感知的多种方式建模
A Hierarchial Model for Visual Perception
视觉感知的层次模型
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bolei Zhou;Liqing Zhang
  • 通讯作者:
    Liqing Zhang

Bolei Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bolei Zhou', 18)}}的其他基金

CAREER: Learning Generalizable and Interpretable Embodied AI with Human Priors
职业:利用人类先验学习可概括和可解释的具体人工智能
  • 批准号:
    2339769
  • 财政年份:
    2024
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
  • 批准号:
    2318703
  • 财政年份:
    2023
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: NEW: Building a Batteryless Computing Community through Access to Education, Testbeds, and Tools
合作研究:CCRI:新:通过获得教育、测试平台和工具构建无电池计算社区
  • 批准号:
    2235002
  • 财政年份:
    2023
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
  • 批准号:
    2235160
  • 财政年份:
    2023
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Syntactic Differencing Infrastructure for Software Evolution Research
合作研究:CCRI:新:软件进化研究的句法差异基础设施
  • 批准号:
    2232594
  • 财政年份:
    2023
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: CoMIC: A Collaborative Mobile Immersive Computing Research Infrastructure for Multi-user XR
协作研究:CCRI:新:CoMIC:用于多用户 XR 的协作移动沉浸式计算研究基础设施
  • 批准号:
    2235050
  • 财政年份:
    2023
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: New: Distributed Space and Terrestrial Networking Infrastructure for Multi-Constellation Coexistence
合作研究:研究基础设施:CCRI:新:用于多星座共存的分布式空间和地面网络基础设施
  • 批准号:
    2235140
  • 财政年份:
    2023
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
  • 批准号:
    2318704
  • 财政年份:
    2023
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: Grand: Quori 2.0: Uniting, Broadening, and Sustaining a Research Community Around a Modular Social Robot Platform
协作研究:CCRI:盛大:Quori 2.0:围绕模块化社交机器人平台联合、扩大和维持研究社区
  • 批准号:
    2235042
  • 财政年份:
    2023
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: Planning-C: A Community for Configurability Open Research and Development (ACCORD)
合作研究:CCRI:Planning-C:可配置性开放研究与开发社区 (ACCORD)
  • 批准号:
    2234909
  • 财政年份:
    2023
  • 资助金额:
    $ 96.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了