Transforming Introductory Computer Science Instruction with an AI-Driven Classroom Assistant
利用人工智能驱动的课堂助手改变计算机科学入门教学
基本信息
- 批准号:2236195
- 负责人:
- 金额:$ 172.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by using artificial intelligence (AI) technology to transform introductory programming classrooms into active, engaging, and supportive learning environments for a diverse range of students. Advances in AI are rapidly transforming every aspect of human life, including education. The collaborative project team plans to develop INSIGHT, an AI-driven classroom assistant for introductory computer science that provides real-time support to both students and instructors. The INSIGHT classroom assistant has the potential to improve introductory computer science education by supporting students with adaptive feedback and supporting instructors with aggregate student coding analytics. The proposed project has the potential to help instructors to dynamically adapt their instruction to students' conceptual understanding of computer science concepts.This project has three main objectives. First is to design, develop, and iteratively refine the INSIGHT AI-driven classroom assistant. Second is to develop a deep understanding of how students learn computer science with AI-driven classroom assistants. Third is to design a set of effective instructional support principles for coding-enriched classroom interactions. The project team will collaborate with instructors in a wide range of introductory computer science courses at large and small public universities, and Historically Black Colleges and Universities. The team plans to evaluate the impacts of INSIGHT on improving students’ learning and engagement. Results from the project will be shared with practitioners and researchers through workshops and presentations at conferences on computer science and engineering education. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through its Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过使用人工智能(AI)技术将入门编程教室转变为各种学生的积极,参与和支持性学习环境来服务于国家利益。人工智能的进步正在迅速改变人类生活的方方面面,包括教育。合作项目团队计划开发INSIGHT,这是一种人工智能驱动的课堂助手,用于介绍计算机科学,为学生和教师提供实时支持。INSIGHT课堂助手有可能通过支持学生自适应反馈和支持教师聚合学生编码分析来改善入门计算机科学教育。建议的项目有可能帮助教师动态地调整他们的教学,以适应学生的概念理解的计算机科学概念。首先是设计、开发和迭代完善INSIGHT AI驱动的课堂助手。其次是深入了解学生如何通过人工智能驱动的课堂助手学习计算机科学。第三,设计一套有效的编码强化课堂互动的教学支持原则。该项目团队将与教师合作,在大型和小型公立大学以及历史上的黑人学院和大学开设广泛的计算机科学入门课程。该小组计划评估INSIGHT对改善学生学习和参与的影响。该项目的成果将通过计算机科学和工程教育会议上的研讨会和演讲与从业人员和研究人员分享。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Use of Large Language Models for Extracting Knowledge Components in CS1 Programming Exercises
使用大型语言模型提取 CS1 编程练习中的知识组件
- DOI:10.1145/3626253.3635592
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Niousha, Rose;Hoq, Muntasir;Akram, Bita;Norouzi, Narges
- 通讯作者:Norouzi, Narges
Towards Attention-Based Automatic Misconception Identification in Introductory Programming Courses
在入门编程课程中实现基于注意力的自动误解识别
- DOI:10.1145/3626253.3635575
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Hoq, Muntasir;Vandenberg, Jessica;Mott, Bradford;Lester, James;Norouzi, Narges;Akram, Bita
- 通讯作者:Akram, Bita
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bita Akram其他文献
Detecting ChatGPT-Generated Code in a CS1 Course
在 CS1 课程中检测 ChatGPT 生成的代码
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Muntasir Hoq;Yang Shi;Juho Leinonen;Damilola Babalola;Collin Lynch;Bita Akram - 通讯作者:
Bita Akram
AI in Computing Education from Research to Practice
人工智能在计算教育中从研究到实践
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bita Akram;Juho Leinonen;Narges Norouzi;J. Prather;Lisa Zhang - 通讯作者:
Lisa Zhang
Assessment of Students' Computer Science Focal Knowledge, Skills, and Abilities in Game-Based Learning Environments.
- DOI:
- 发表时间:
2019-07 - 期刊:
- 影响因子:0
- 作者:
Bita Akram - 通讯作者:
Bita Akram
CINAPACT-Splines: A Family of Infinitely Smooth, Accurate and Compactly Supported Splines
CINAPACT-Splines:一系列无限平滑、精确且紧支撑的样条曲线
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Bita Akram;U. Alim;F. Samavati - 通讯作者:
F. Samavati
Investigation of Students’ Learning, Interest, and Career Aspirations in an Integrated Science and Artificial Intelligence Learning Environment (i-SAIL)
在综合科学和人工智能学习环境(i-SAIL)中调查学生的学习、兴趣和职业愿望
- DOI:
10.1145/3568812.3603488 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Bita Akram;Shiyan Jiang - 通讯作者:
Shiyan Jiang
Bita Akram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bita Akram', 18)}}的其他基金
Analysis of a Simple, Low-cost Intervention's Impact on Retention of Women in Computer Science
分析简单、低成本的干预措施对计算机科学领域女性保留的影响
- 批准号:
2021330 - 财政年份:2020
- 资助金额:
$ 172.35万 - 项目类别:
Standard Grant
相似海外基金
Scaffolding Computational Thinking in Introductory Computer Science through a Conversational Agent
通过对话代理在计算机科学入门中搭建计算思维的脚手架
- 批准号:
2235601 - 财政年份:2023
- 资助金额:
$ 172.35万 - 项目类别:
Standard Grant
Transforming Introductory Computer Science Instruction with an AI-Driven Classroom Assistant
利用人工智能驱动的课堂助手改变计算机科学入门教学
- 批准号:
2236011 - 财政年份:2023
- 资助金额:
$ 172.35万 - 项目类别:
Continuing Grant
Transforming Introductory Computer Science Instruction with an AI-Driven Classroom Assistant
利用人工智能驱动的课堂助手改变计算机科学入门教学
- 批准号:
2331965 - 财政年份:2023
- 资助金额:
$ 172.35万 - 项目类别:
Continuing Grant
Scaffolding Computational Thinking in Introductory Computer Science through a Conversational Agent
通过对话代理在计算机科学入门中搭建计算思维的脚手架
- 批准号:
2236198 - 财政年份:2023
- 资助金额:
$ 172.35万 - 项目类别:
Standard Grant
Broadening Participation in Introductory Computer Science: Investigating Self-Assessment Practices for Increasing Student Learning and Self-Efficacy in Two Institutional Contexts
扩大计算机科学入门的参与:研究两种制度背景下提高学生学习和自我效能的自我评估实践
- 批准号:
2215245 - 财政年份:2022
- 资助金额:
$ 172.35万 - 项目类别:
Standard Grant
An Online Tool to Support Productive Struggles and Improve the Self-Efficacy of Undergraduate Students in Introductory Computer Science Courses.
一种在线工具,可支持本科生在计算机科学入门课程中的生产性斗争和提高自我效能。
- 批准号:
2215849 - 财政年份:2022
- 资助金额:
$ 172.35万 - 项目类别:
Standard Grant
Improving the Quality of Teaching Assistant Feedback to Undergraduate Students in Introductory Computer Science Courses
提高本科生计算机科学入门课程助教反馈质量
- 批准号:
2044279 - 财政年份:2021
- 资助金额:
$ 172.35万 - 项目类别:
Standard Grant
A Machine Learning Student Behavior Model to Identify Struggling Students in Introductory Computer Science Courses
机器学习学生行为模型,用于识别在计算机科学入门课程中遇到困难的学生
- 批准号:
2125959 - 财政年份:2021
- 资助金额:
$ 172.35万 - 项目类别:
Standard Grant
NSF Cyberlearning: Context-Aware Metacognitive Practice: Instrumenting Classroom Ecosystems to Help Introductory Computer Science Students Develop Effective Learning Strategies
NSF 网络学习:情境感知元认知实践:利用课堂生态系统帮助计算机科学入门学生制定有效的学习策略
- 批准号:
2016900 - 财政年份:2020
- 资助金额:
$ 172.35万 - 项目类别:
Standard Grant
Centering minoritized high school students' perspectives from introductory Computer Science through 12th grade and beyond
从计算机科学入门到 12 年级及以上,以少数族裔高中生的观点为中心
- 批准号:
2030935 - 财政年份:2020
- 资助金额:
$ 172.35万 - 项目类别:
Standard Grant