CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
基本信息
- 批准号:2237322
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Drawing samples from a distribution is a core computational challenge in fields such as Bayesian statistics, machine learning, statistical physics, and many other areas involving stochastic models. Among all methods, Markov Chain Monte Carlo (MCMC) algorithms stand out as the most widely used class of sampling algorithms with a broad range of applications, notably in high dimensional Bayesian inference. While MCMC algorithms have been proposed, studied, and implemented since the foundational work of Metropolis et al. in 1953, many convergence properties of algorithms used in practice are not well understood. Practitioners in Bayesian statistics are often faced with a series of key challenges to be addressed rigorously: the choice of algorithm hyper-parameters, the estimated computational cost and the choice of the best algorithm, etc. This project focuses on developing theoretical guarantees of MCMC sampling algorithms that arise in large-scale Bayesian statistical inference problems.The project will also offer numerous interdisciplinary research training, outreach and mentoring opportunities for the next generation of statisticians and data scientists at all levels, from undergraduate to doctoral students.This project will address three specific research problems centered around MCMC algorithms in high dimensional inference. First, the project intends to rigorously rank the efficiency of MCMC algorithms for sampling log-concave distributions and to provide succinct non-asymptotic mini-max analysis of mixing time. Log-concave distributions in sampling are as important as convex functions in optimization, and one cannot expect to build a foundational theory basis without determining the fundamental limits of sampling algorithms on log-concave distributions. Widely-used algorithms such as Hamiltonian Monte Carlo, Gibbs sampling and hit-and-run will be studied rigorously. Second, as concentration inequalities constitute an essential component in understanding the efficiency of MCMC sampling algorithms, the project will develop a fine-grained understanding of concentration of high dimensional log-concave distributions via new technical tools such as stochastic localization. Finally, the project will unify the existing theoretical tools for studying discrete-state and continuous-state sampling algorithms through localization schemes. The proposed research aims to advance the field with a comprehensive understanding of MCMC sampling algorithms and their optimal settings in both discrete and continuous cases. The project will provide a wide range of interdisciplinary initiatives to enhance professional development of undergraduate and graduate students in statistical sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从分布中绘制样品是贝叶斯统计,机器学习,统计物理学以及许多涉及随机模型的领域等领域的核心计算挑战。在所有方法中,马尔可夫链蒙特卡洛(MCMC)算法是最广泛使用的采样算法,具有广泛的应用,尤其是在高维贝叶斯推断中。自从Metropolis等人的基础工作以来,已经提出,研究和实施MCMC算法。在1953年,在实践中使用的算法的许多收敛属性尚不清楚。 Practitioners in Bayesian statistics are often faced with a series of key challenges to be addressed rigorously: the choice of algorithm hyper-parameters, the estimated computational cost and the choice of the best algorithm, etc. This project focuses on developing theoretical guarantees of MCMC sampling algorithms that arise in large-scale Bayesian statistical inference problems.The project will also offer numerous interdisciplinary research training, outreach从本科生到博士学生,为下一代统计学家和数据科学家提供指导机会。本项目将解决以高维推断中MCMC算法为中心的三个特定研究问题。首先,该项目打算严格对MCMC算法的效率进行采样对数 - 循环分布的效率,并提供对混合时间的简洁非反应小型max分析。采样中的对数符号分布与凸功能在优化中一样重要,并且在不确定对数字循环分布上采样算法的基本限制的情况下,人们无法期望建立基础理论基础。将严格研究广泛使用的算法,例如汉密尔顿蒙特卡洛,吉布斯采样和撞击。其次,由于集中不平等是了解MCMC采样算法效率的重要组成部分,因此该项目将通过新的技术工具(例如随机定位)对高维对数concave分布的浓度产生良好的了解。最后,该项目将统一通过本地化方案研究离散状态和连续采样算法的现有理论工具。拟议的研究旨在通过对MCMC采样算法及其在离散和连续情况下的最佳设置进行全面了解,以推进该领域。该项目将提供广泛的跨学科举措,以增强统计科学的本科生和研究生的专业发展。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子的智力优点和更广泛影响的审查标准来评估值得通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuansi Chen其他文献
Hit-and-run mixing via localization schemes
通过本地化方案进行“打了就跑”的混音
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yuansi Chen;Ronen Eldan - 通讯作者:
Ronen Eldan
The DeepTune framework for modeling and characterizing neurons in visual cortex area V4
用于建模和表征视觉皮层 V4 区域神经元的 DeepTune 框架
- DOI:
10.1101/465534 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
R. Abbasi;Yuansi Chen;Adam Bloniarz;M. Oliver;B. Willmore;J. Gallant;Bin Yu - 通讯作者:
Bin Yu
An Almost Constant Lower Bound of the Isoperimetric Coefficient in the KLS Conjecture
- DOI:
10.1007/s00039-021-00558-4 - 发表时间:
2020-11 - 期刊:
- 影响因子:2.2
- 作者:
Yuansi Chen - 通讯作者:
Yuansi Chen
Yuansi Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
SHP2调控Treg向Th2-like Treg的可塑性转化在变应性鼻炎中的作用与机制研究
- 批准号:82301281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
- 批准号:12375228
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
CXCR5依赖的边缘区B细胞向滤泡树突状细胞呈递外泌体引发心脏移植排斥的研究
- 批准号:82300460
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dlx2通过调控Tspan13影响上颌突间充质干细胞骨向分化的机制研究
- 批准号:82301008
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
糖尿病心肌病心室重构的新机制:高糖诱导巨噬细胞脂质代谢重编程通过活性脂质MA调控心脏成纤维细胞向肌成纤维细胞转分化的机制研究
- 批准号:82300404
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
- 批准号:
DE240100109 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Discovery Early Career Researcher Award
非侵襲型BMIの高精度化に向けた自発脳活動キャンセリング技術の開発
开发自发脑活动取消技术,提高无创BMI准确度
- 批准号:
24K15691 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
新たな換気応答検査と睡眠検査を活用し神経筋疾患に対する呼吸管理の精度向上を目指す
旨在利用新的通气反应测试和睡眠测试提高神经肌肉疾病呼吸管理的准确性
- 批准号:
24K15770 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DXに基づく在宅糖尿病患者向け専門職連携型オンライン保健指導プログラムの開発
基于DX的跨专业糖尿病患者家庭在线健康指导方案的开发
- 批准号:
24K15836 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
発達障害児の父親向けハイブリッド型育児支援プログラムの開発
为发育障碍儿童的父亲制定混合育儿支持计划
- 批准号:
24K13951 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)