CAREER: Catalytic Living Materials Constructed with Engineered Spores and Polymer Scaffolds
职业:用工程孢子和聚合物支架构建的催化活性材料
基本信息
- 批准号:2237344
- 负责人:
- 金额:$ 52.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical summaryBacterial spores are like seeds. They are hardy, preserve well, and can grow into living organisms when the conditions are right, even if it requires waiting many years. Like a sunflower seed growing into a sunflower that produces multiple seeds, a bacterial spore can grow into billions of cells that later become billions of spores. Scientists can now engineer bacterial spores to decorate their surfaces with biological machinery called enzymes, a category of proteins that are essential to all life because of their ability to speed up useful chemical reactions. Combining these functionalized spores with engineered polymers enables the production of new materials performing catalytic reactions. This project investigates recipes for creating such materials by engineering both synthetic polymers and bacterial spores, with special emphasis on making materials degrading toxic compounds from the environment. The outcome of this research will establish a foundation for creating a diverse array of materials that can facilitate a wide range of chemical reactions. It will also provide new fundamental knowledge in building engineered interfaces between synthetic materials and bacterial spores. Along with the research activities, educational and outreach programs will be developed for community college students, K12 students, and polymer chemistry students at UC Irvine.Technical summaryThis project aims to develop robust, intelligent catalytic living materials utilizing dynamic covalent bond formation between engineered polymer scaffolds and B. subtilis spores. In particular, the team will focus on creating living materials for catalytic bioremediation. Because bacterial spores can survive harsh conditions, such as dehydration, nutrient limitation, organic solvents, and oxidative stress, spore-containing composite materials could be produced and stored in a dried form. Upon engineering both the bacterial spores and polymeric materials constituting living materials, they are expected to perform robust catalysis for a wide range of substrates, are stable under dry storage for a long period of time, and are recyclable after use. Specifically, the following four research objectives will be pursued: (1) evaluating various motifs for building a well-defined molecular interface on B. subtilis spores, (2) engineering B. subtilis spores for catalytic bioremediation, (3) synthesizing and studying physical properties of spore-containing living materials. (4) evaluating and engineering catalytic behaviors of living materials. The educational objectives to complement the research activities are (1) the development of an outreach and research program targeting local community college (CC) students and CC transfer students, (2) participation in the outreach program targeting local K12 students, and (3) mentoring and educating students at UCI and leading the polymer chemistry club activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要细菌孢子就像种子。它们生命力顽强,保存完好,只要条件合适,即使需要等待很多年,也能长成活的有机体。就像向日葵种子长成向日葵并产生多个种子一样,细菌孢子可以长成数十亿个细胞,然后再变成数十亿个孢子。科学家现在可以设计细菌孢子,用一种叫做酶的生物机器来装饰它们的表面,酶是一类对所有生命都至关重要的蛋白质,因为它们能够加速有用的化学反应。将这些功能化孢子与工程聚合物相结合,可以生产出进行催化反应的新材料。该项目研究通过设计合成聚合物和细菌孢子来制造此类材料的配方,特别强调制造能够降解环境中有毒化合物的材料。这项研究的成果将为创造各种可以促进各种化学反应的材料奠定基础。它还将为构建合成材料和细菌孢子之间的工程界面提供新的基础知识。除了研究活动之外,还将为加州大学欧文分校的社区学院学生、K12 学生和高分子化学学生制定教育和推广计划。技术摘要该项目旨在利用工程聚合物支架和枯草芽孢杆菌孢子之间动态共价键的形成,开发强大的智能催化活性材料。特别是,该团队将专注于创造用于催化生物修复的活性材料。由于细菌孢子可以在脱水、营养限制、有机溶剂和氧化应激等恶劣条件下生存,因此可以生产并以干燥形式储存含有孢子的复合材料。通过对细菌孢子和构成生命材料的聚合物材料进行工程设计,它们有望对多种底物发挥强大的催化作用,在干燥储存下长期稳定,并且在使用后可回收。具体来说,将追求以下四个研究目标:(1)评估在枯草芽孢杆菌孢子上构建明确分子界面的各种基序,(2)改造枯草芽孢杆菌孢子用于催化生物修复,(3)合成和研究含有孢子的活材料的物理性质。 (4)评估和设计生命材料的催化行为。补充研究活动的教育目标是 (1) 制定针对当地社区学院 (CC) 学生和 CC 转学生的外展和研究计划,(2) 参与针对当地 K12 学生的外展计划,以及 (3) 指导和教育 UCI 的学生并领导高分子化学俱乐部活动。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和能力进行评估,认为值得支持。 更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data from: Catalytic materials enabled by a programmable assembly of synthetic polymers and bacterial spores
数据来自:通过合成聚合物和细菌孢子的可编程组装实现的催化材料
- DOI:10.7280/d1611w
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kawada, Masamu;Jo, Hyuna;Medina, Alexis;Sim, Seunghyun
- 通讯作者:Sim, Seunghyun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seunghyun Sim其他文献
存在感メディアの研究
存在媒体研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Daiki Kashiwagi;Seunghyun Sim;Takuzo Aida;亀田真澄;角田千枝・門屋博・川合康央・向坂文宏;石黒 浩 - 通讯作者:
石黒 浩
Protein Supramolecular Polymerization Switchable via DNA Input
可通过 DNA 输入切换蛋白质超分子聚合
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Daiki Kashiwagi;Seunghyun Sim;Takuzo Aida - 通讯作者:
Takuzo Aida
技術の系統化調査報告,Vol.20, (2013)
技术系统化调查报告,第 20 卷,(2013)
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Daiki Kashiwagi;Seunghyun Sim;Takuzo Aida;亀田真澄;角田千枝・門屋博・川合康央・向坂文宏;石黒 浩;永田宇征,亀井修(エディット) - 通讯作者:
永田宇征,亀井修(エディット)
ICT活用推進リーダーを対象にした集合研修の改善と評価
ICT应用推广领导者集体培训的改进与评估
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
P. K. Hashim;Seunghyun Sim;Kou Okuro;Takuzo Aida;小清水貴子,藤木卓,室田真男 - 通讯作者:
小清水貴子,藤木卓,室田真男
Network Formation of Engineered Proteins and Their Bioactive Properties
- DOI:
10.1007/978-3-030-92949-7_1 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Seunghyun Sim - 通讯作者:
Seunghyun Sim
Seunghyun Sim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
- 批准号:
EP/Y003020/1 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Research Grant
CAREER: CAS: An Electrochemical Approach for Catalytic Dehydration
职业:CAS:催化脱水的电化学方法
- 批准号:
2339405 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Continuing Grant
CAS: Catalytic Reactions Using Multinuclear Complexes
CAS:使用多核配合物的催化反应
- 批准号:
2349801 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant
Engineered redox polymers for catalytic water purification
用于催化水净化的工程氧化还原聚合物
- 批准号:
FT230100526 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
ARC Future Fellowships
Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
- 批准号:
EP/Y001168/1 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Research Grant
Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
- 批准号:
EP/Y001710/1 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Research Grant
Development of in situ ammonia capture for enhanced catalytic ammonia synthesis
开发用于增强催化氨合成的原位氨捕获
- 批准号:
24K17765 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Early Metal Bimetallic Platforms for Controlled, Catalytic Dinitrogen Functionalization
用于受控催化二氮功能化的早期金属双金属平台
- 批准号:
2348646 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant
Chirality-Driven Self-Assembly of Dual Catalytic Dendrimers: Application Toward One-Pot Tandem Reactions
双催化树枝状聚合物的手性驱动自组装:一锅串联反应的应用
- 批准号:
2426644 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant














{{item.name}}会员




