CAREER: Catalytic Living Materials Constructed with Engineered Spores and Polymer Scaffolds
职业:用工程孢子和聚合物支架构建的催化活性材料
基本信息
- 批准号:2237344
- 负责人:
- 金额:$ 52.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical summaryBacterial spores are like seeds. They are hardy, preserve well, and can grow into living organisms when the conditions are right, even if it requires waiting many years. Like a sunflower seed growing into a sunflower that produces multiple seeds, a bacterial spore can grow into billions of cells that later become billions of spores. Scientists can now engineer bacterial spores to decorate their surfaces with biological machinery called enzymes, a category of proteins that are essential to all life because of their ability to speed up useful chemical reactions. Combining these functionalized spores with engineered polymers enables the production of new materials performing catalytic reactions. This project investigates recipes for creating such materials by engineering both synthetic polymers and bacterial spores, with special emphasis on making materials degrading toxic compounds from the environment. The outcome of this research will establish a foundation for creating a diverse array of materials that can facilitate a wide range of chemical reactions. It will also provide new fundamental knowledge in building engineered interfaces between synthetic materials and bacterial spores. Along with the research activities, educational and outreach programs will be developed for community college students, K12 students, and polymer chemistry students at UC Irvine.Technical summaryThis project aims to develop robust, intelligent catalytic living materials utilizing dynamic covalent bond formation between engineered polymer scaffolds and B. subtilis spores. In particular, the team will focus on creating living materials for catalytic bioremediation. Because bacterial spores can survive harsh conditions, such as dehydration, nutrient limitation, organic solvents, and oxidative stress, spore-containing composite materials could be produced and stored in a dried form. Upon engineering both the bacterial spores and polymeric materials constituting living materials, they are expected to perform robust catalysis for a wide range of substrates, are stable under dry storage for a long period of time, and are recyclable after use. Specifically, the following four research objectives will be pursued: (1) evaluating various motifs for building a well-defined molecular interface on B. subtilis spores, (2) engineering B. subtilis spores for catalytic bioremediation, (3) synthesizing and studying physical properties of spore-containing living materials. (4) evaluating and engineering catalytic behaviors of living materials. The educational objectives to complement the research activities are (1) the development of an outreach and research program targeting local community college (CC) students and CC transfer students, (2) participation in the outreach program targeting local K12 students, and (3) mentoring and educating students at UCI and leading the polymer chemistry club activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细菌孢子就像种子。它们耐寒,保存良好,当条件合适时,即使需要等待多年,也能长成活的有机体。就像一颗葵花籽长成一颗能产生多个种子的葵花籽一样,一个细菌孢子可以长成数十亿个细胞,然后再变成数十亿个孢子。科学家们现在可以设计细菌孢子,用一种叫做酶的生物机械来装饰它们的表面。酶是一种蛋白质,对所有生命都是必不可少的,因为它们能够加速有用的化学反应。将这些功能化的孢子与工程聚合物相结合,可以生产出执行催化反应的新材料。该项目研究了通过工程合成聚合物和细菌孢子来制造这些材料的配方,特别强调了从环境中制造降解有毒化合物的材料。这项研究的结果将为创造各种各样的材料奠定基础,这些材料可以促进广泛的化学反应。它还将为在合成材料和细菌孢子之间建立工程界面提供新的基础知识。在开展研究活动的同时,还将为加州大学欧文分校的社区大学生、K12学生和聚合物化学专业的学生开发教育和推广项目。该项目旨在利用工程聚合物支架和枯草芽孢杆菌孢子之间形成的动态共价键,开发强大的智能催化活性材料。特别是,该团队将专注于创造用于催化生物修复的活性材料。由于细菌孢子可以在恶劣的条件下存活,如脱水、营养限制、有机溶剂和氧化应激,因此可以生产含孢子的复合材料并以干燥的形式储存。在工程上,细菌孢子和构成生命材料的聚合物材料都有望对广泛的底物发挥强大的催化作用,在干燥储存下长时间稳定,并且使用后可回收。具体而言,将实现以下四个研究目标:(1)评估各种基序以构建明确的枯草芽孢杆菌孢子分子界面;(2)对枯草芽孢杆菌孢子进行工程催化生物修复;(3)合成和研究含孢子活性材料的物理性质。(4)生物材料催化行为的评价与工程化。与研究活动相辅相成的教育目标是:(1)针对当地社区学院(CC)学生和CC转学生开展外展和研究计划,(2)参与针对当地K12学生的外展计划,(3)指导和教育UCI的学生并领导聚合物化学俱乐部活动。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data from: Catalytic materials enabled by a programmable assembly of synthetic polymers and bacterial spores
数据来自:通过合成聚合物和细菌孢子的可编程组装实现的催化材料
- DOI:10.7280/d1611w
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kawada, Masamu;Jo, Hyuna;Medina, Alexis;Sim, Seunghyun
- 通讯作者:Sim, Seunghyun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seunghyun Sim其他文献
存在感メディアの研究
存在媒体研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Daiki Kashiwagi;Seunghyun Sim;Takuzo Aida;亀田真澄;角田千枝・門屋博・川合康央・向坂文宏;石黒 浩 - 通讯作者:
石黒 浩
Protein Supramolecular Polymerization Switchable via DNA Input
可通过 DNA 输入切换蛋白质超分子聚合
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Daiki Kashiwagi;Seunghyun Sim;Takuzo Aida - 通讯作者:
Takuzo Aida
技術の系統化調査報告,Vol.20, (2013)
技术系统化调查报告,第 20 卷,(2013)
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Daiki Kashiwagi;Seunghyun Sim;Takuzo Aida;亀田真澄;角田千枝・門屋博・川合康央・向坂文宏;石黒 浩;永田宇征,亀井修(エディット) - 通讯作者:
永田宇征,亀井修(エディット)
ICT活用推進リーダーを対象にした集合研修の改善と評価
ICT应用推广领导者集体培训的改进与评估
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
P. K. Hashim;Seunghyun Sim;Kou Okuro;Takuzo Aida;小清水貴子,藤木卓,室田真男 - 通讯作者:
小清水貴子,藤木卓,室田真男
Network Formation of Engineered Proteins and Their Bioactive Properties
- DOI:
10.1007/978-3-030-92949-7_1 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Seunghyun Sim - 通讯作者:
Seunghyun Sim
Seunghyun Sim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
- 批准号:
EP/Y003020/1 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Research Grant
Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
- 批准号:
EP/Y001168/1 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Research Grant
Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
- 批准号:
EP/Y001710/1 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Research Grant
CAREER: CAS: An Electrochemical Approach for Catalytic Dehydration
职业:CAS:催化脱水的电化学方法
- 批准号:
2339405 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Continuing Grant
CAS: Catalytic Reactions Using Multinuclear Complexes
CAS:使用多核配合物的催化反应
- 批准号:
2349801 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant
Engineered redox polymers for catalytic water purification
用于催化水净化的工程氧化还原聚合物
- 批准号:
FT230100526 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
ARC Future Fellowships
Development of in situ ammonia capture for enhanced catalytic ammonia synthesis
开发用于增强催化氨合成的原位氨捕获
- 批准号:
24K17765 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Early Metal Bimetallic Platforms for Controlled, Catalytic Dinitrogen Functionalization
用于受控催化二氮功能化的早期金属双金属平台
- 批准号:
2348646 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant
Chirality-Driven Self-Assembly of Dual Catalytic Dendrimers: Application Toward One-Pot Tandem Reactions
双催化树枝状聚合物的手性驱动自组装:一锅串联反应的应用
- 批准号:
2426644 - 财政年份:2024
- 资助金额:
$ 52.29万 - 项目类别:
Standard Grant














{{item.name}}会员




