CAREER: Transforming the Future of Flexible Transistors with Photonic Processing

职业:通过光子处理改变柔性晶体管的未来

基本信息

  • 批准号:
    2237479
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

Electronic devices have become an integral part of human life. From cell phones and medical devices to cars and traffic monitors, we rely on electronic circuits to keep us connected, healthy, and safe. While the vast majority of electronics today are built using hard, rigid materials, electronics that are soft and flexible are desirable for many applications. For example, wearable and implantable biomedical sensors will benefit from advances in flexible electronics that can bend and stretch to conform to the body. This research aims to make transformative changes in the performance, stability, and durability of flexible electronics. The proposed activities will generate a novel low-cost approach to fabricating flexible circuits. Results from this work will enable this novel fabrication approach to be used in a wide array of next-generation flexible circuit applications including displays, biomedical sensors, and durable lightweight electronics for military applications. In addition, a synergistic combination of research and integrated education activities are proposed that aim to inspire the next generation of electrical engineers and increase engagement of women and under-represented minorities in engineering.Currently, flexible circuit technology is readily available for passives (metals) but in applications such as displays and sensors, flexible transistors (semiconductors) are needed. The thermal properties and solvent compatibility of plastic substrates place severe limitations on the fabrication of flexible thin-film transistors (TFTs), so TFT performance is sacrificed to achieve flexible, lightweight circuits. To overcome the fundamental tradeoff between the processing requirements of substrates and TFTs, we will leverage new advancements in photonic processing technology to produce high-performance flexible TFTs. Photonic curing uses short, intense pulses of broadband light to heat a thin film, while most of the substrate remains near room temperature. However, there is a compelling need to better understand the physics of the photonic curing process and the quality of photonically cured semiconductor TFTs. This research will pursue the following four objectives: (1) Predict the 3D thermal profile in circuits during photonic curing, and understand how geometry, device layout, proximity effects, and material properties impact curing temperature; (2) Determine the impact of photonic curing on trap states and electron transport in oxide semiconductors on plastic substrates by combining electrical and materials characterizations with a model of the density of electronic traps in the semiconductor; (3) Identify failure mechanisms of the plastic substrate to enable the oxide semiconductor to be more aggressively cured without damaging the substrates, and (4) Analyze multiple simultaneous stress factors in flexible oxide TFTs to improve their durability using a novel testing scheme that mimics a realistic operating environment. This research will advance science by shedding new light on the sub-millisecond interactions between light, heat, and thin-film semiconductor materials. New models that predict the thermal profiles during large-area photonic curing will enable this technology to be used in a wide array of flexible circuit applications. Furthermore, these activities will also build a firm foundation for the PI to pursue her long-term career goal of leading high-impact collaborative projects with physicians and health care providers. She aims to create innovative tools leading to a paradigm shift in how health care is delivered in fields such as emergency triage, battlefield wound monitoring, implantable neural interfaces, and soft wireless pediatric devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电子设备已经成为人类生活中不可或缺的一部分。从手机和医疗设备到汽车和交通监控器,我们依靠电子电路保持联系、健康和安全。虽然今天的绝大多数电子产品都是使用坚硬的材料制造的,但对于许多应用来说,柔软和灵活的电子产品是可取的。例如,可穿戴和可植入的生物医学传感器将受益于柔性电子设备的进步,这种电子设备可以弯曲和拉伸以适应身体。这项研究旨在对柔性电子产品的性能、稳定性和耐用性进行变革性的改变。建议的活动将产生一种新的低成本方法来制造柔性电路。这项工作的结果将使这种新颖的制造方法能够用于广泛的下一代柔性电路应用,包括显示器、生物医学传感器和用于军事应用的耐用轻量化电子产品。此外,还提出了研究和综合教育活动的协同结合,旨在激励下一代电气工程师,并增加妇女和未被充分代表的少数群体参与工程。目前,柔性电路技术很容易用于无源(金属),但在显示器和传感器等应用中,需要柔性晶体管(半导体)。塑料衬底的热性能和溶剂兼容性严重限制了柔性薄膜晶体管(TFT)的制造,因此为了实现柔性、轻量化的电路,TFT的性能被牺牲了。为了克服基板和TFT的加工要求之间的根本权衡,我们将利用光子加工技术的新进步来生产高性能的柔性TFT。光子固化使用短而强烈的宽带光脉冲来加热薄膜,而大多数衬底保持在室温附近。然而,迫切需要更好地了解光固化过程的物理过程和光固化半导体TFT的质量。这项研究将追求以下四个目标:(1)预测光固化过程中电路中的三维热分布,了解几何形状、器件布局、邻近效应和材料特性对固化温度的影响;(2)通过结合半导体中电子陷阱密度的模型,结合电学和材料特性来确定光子固化对塑料衬底上氧化物半导体中陷阱态和电子输运的影响;(3)确定塑料基板的失效机制,以使氧化物半导体能够在不损坏基板的情况下更积极地固化;以及(4)使用模拟现实操作环境的新型测试方案,分析柔性氧化物TFT中的多种同时应力因素,以提高其耐用性。这项研究将为光、热和薄膜半导体材料之间亚毫秒级的相互作用带来新的曙光,从而推动科学发展。预测大面积光子固化过程中热分布的新模型将使这项技术能够在广泛的柔性电路应用中使用。此外,这些活动还将为PI追求她的长期职业目标奠定坚实的基础,即领导与医生和医疗保健提供者的高影响力合作项目。她的目标是创造创新的工具,在紧急分诊、战场创伤监测、植入式神经接口和软无线儿科设备等领域转变医疗保健的提供方式。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sarah Swisher其他文献

Sarah Swisher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sarah Swisher', 18)}}的其他基金

Photonic Curing of Semiconductor Nanocrystals for High-Performance Flexible Electronics
用于高性能柔性电子产品的半导体纳米晶体的光子固化
  • 批准号:
    1710008
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Transforming Trajectories for Women of Color in Tech: A Meeting Series to Develop a Systemic Action Plan
会议:改变有色人种女性在科技领域的轨迹:制定系统行动计划的会议系列
  • 批准号:
    2333305
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAP: AI-Ready Institution Transforming Tomorrow's Research and Education with AI Focused on Health and Security (Jag-AI)
CAP:人工智能就绪机构通过专注于健康和安全的人工智能改变未来的研究和教育 (Jag-AI)
  • 批准号:
    2334243
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Transforming museum industry to cryopreserve Australia’s diverse wildlife
改造博物馆行业以冷冻保存澳大利亚多样化的野生动物
  • 批准号:
    LP230100359
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Linkage Projects
Transforming Australian cities through net-zero transit activated corridors
通过净零交通激活走廊改造澳大利亚城市
  • 批准号:
    DE240101072
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Early Career Researcher Award
GlycoCell Engineering Biology Mission Hub: Transforming glycan biomanufacture for health
GlycoCell 工程生物学任务中心:转变聚糖生物制造以促进健康
  • 批准号:
    BB/Y008472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Transforming child mental health: co-designing, building and evaluating a digitally enabled, personalised, prevention pathway
改变儿童心理健康:共同设计、构建和评估数字化、个性化的预防途径
  • 批准号:
    MR/X034917/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Fellowship
STEMcyclists: Black and Brown Youth Transforming Science and Engineering via Bikes
STEMcyclists:黑人和棕色人种青年通过自行车改变科学和工程
  • 批准号:
    2314260
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Planning: Pathways to Transforming Arctic Science Programs
规划:北极科学项目转型之路
  • 批准号:
    2421373
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Trust in Pacific Healthcare: Transforming research, policy and practice
对太平洋医疗保健的信任:改变研究、政策和实践
  • 批准号:
    DP230102606
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了