CAREER: Robust and Autonomous Robot Adaptation in Novel Scenarios

职业:新场景中鲁棒且自主的机器人适应

基本信息

  • 批准号:
    2237693
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

A major current technological challenge is to enable deployment of robots into open real-world environments to help advance human welfare. This Faculty Early Career Development (CAREER) project will serve this goal while promoting scientific progress by studying how robots can adapt to new and unfamiliar surroundings encountered during deployment. Adaptation is needed for handling open-world environments since it is remarkably challenging to foresee all the possible scenarios that a robot may encounter. Adaptation demands a degree of autonomy and robustness. This project will study how robots can autonomously adapt during deployment, identify when and how to ask a human for help, and avoid catastrophic failures or getting perpetually stuck in place. The outcomes of this project are expected to have the potential to significantly expand the set of practical applications of robotics, including in manufacturing settings when there is variability in parts and desired configurations, and in the service industry, such as in hospitals and homes where the environment changes frequently based on people’s behavior. This project will also support the development of freely available course lectures and course content pertaining to robotics and machine learning, as well as a mentoring program for undergraduates from groups that are underrepresented in STEM.The central objective of this project is to advance the capability of robots to adapt online during deployment. Robotic reinforcement learning systems can in principle be applied to enable online adaptation, but in practice they are currently ill-equipped to do so. This is because they require supervision and environment resets that are unavailable during deployment. These reinforcement learning systems also do not provide means for robots to identify failures and proactively request interventions in novel environments. This research will develop capabilities that address these challenges and integrate them into a single real robotic system. The research will advance our understanding of: (1) how robots can prepare for unknown situations; (2) how autonomy affects the performance of robotic learning systems; (3) how robots can detect and avoid failures and irreversible states even in new environments; and (4) when automated robot systems should seek external forms of supervision. The developed framework will be thoroughly evaluated on physical robot arms, testing the ability to adapt to a wide variety of unseen circumstances, including new object poses, object materials, and object shapes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当前的一个主要技术挑战是将机器人部署到开放的现实世界环境中,以帮助提高人类福利。这个教师早期职业发展(Career)项目将通过研究机器人如何适应部署过程中遇到的新的和不熟悉的环境来促进科学进步,同时实现这一目标。适应是处理开放世界环境所必需的,因为预测机器人可能遇到的所有可能场景是非常具有挑战性的。适应需要一定程度的自主性和稳健性。该项目将研究机器人如何在部署过程中自主适应,识别何时以及如何向人类寻求帮助,并避免灾难性故障或永远被困在原地。该项目的成果有望显著扩展机器人的实际应用范围,包括在零件和所需配置存在可变性的制造环境中,以及在服务行业中,例如在医院和家庭中,环境会根据人们的行为频繁变化。该项目还将支持开发与机器人和机器学习相关的免费课程讲座和课程内容,以及为来自STEM中代表性不足的群体的本科生提供指导计划。该项目的中心目标是提高机器人在部署期间在线适应的能力。原则上,机器人强化学习系统可以用于实现在线适应,但在实践中,它们目前还没有足够的装备来做到这一点。这是因为它们需要在部署期间不可用的监督和环境重置。这些强化学习系统也不能为机器人提供在新环境中识别故障和主动请求干预的方法。这项研究将开发解决这些挑战的能力,并将它们集成到一个真正的机器人系统中。这项研究将促进我们对以下方面的理解:(1)机器人如何为未知情况做准备;(2)自主性如何影响机器人学习系统的性能;(3)机器人如何在新环境中检测和避免故障和不可逆状态;(4)自动化机器人系统何时应该寻求外部形式的监督。开发的框架将在物理机器人手臂上进行全面评估,测试适应各种未知环境的能力,包括新的物体姿势、物体材料和物体形状。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chelsea Finn其他文献

Learning Visual Feature Spaces for Robotic Manipulation with Deep Spatial Autoencoders
使用深度空间自动编码器学习机器人操作的视觉特征空间
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chelsea Finn;X. Tan;Yan Duan;Trevor Darrell;S. Levine;P. Abbeel
  • 通讯作者:
    P. Abbeel
Disentangling Length from Quality in Direct Preference Optimization
在直接偏好优化中将长度与质量分开
  • DOI:
    10.48550/arxiv.2403.19159
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Park;Rafael Rafailov;Stefano Ermon;Chelsea Finn
  • 通讯作者:
    Chelsea Finn
Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual Model-Based Reinforcement Learning
模型、像素和奖励:评估基于视觉模型的强化学习中的设计权衡
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Babaeizadeh;M. Saffar;Danijar Hafner;Harini Kannan;Chelsea Finn;S. Levine;D. Erhan
  • 通讯作者:
    D. Erhan
Goal-oriented Vision-and-Dialog Navigation through Reinforcement Learning
通过强化学习实现目标导向的视觉和对话导航
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Anderson;Qi Wu;Damien Teney;Jake Bruce;Mark Johnson;Niko Sünderhauf;Ian D. Reid;F. Bonin;Alberto Ortiz;Angel X. Chang;Angela Dai;T. Funkhouser;Ma;Matthias Niebner;M. Savva;David Chen;Raymond Mooney. 2011;Learning;Howard Chen;Alane Suhr;Dipendra Kumar Misra;T. Kollar;Nicholas Roy;Trajectory;Satwik Kottur;José M. F. Moura;Dhruv Devi Parikh;Sergey Levine;Chelsea Finn;Trevor Darrell;Jianfeng Li;Gao Yun;Chen;Ziming Li;Sungjin Lee;Baolin Peng;Jinchao Li;Julia Kiseleva;M. D. Rijke;Shahin Shayandeh;Weixin Liang;Youzhi Tian;Cheng;Yitao Liang;Marlos C. Machado;Erik Talvitie;Chih;Jiasen Lu;Zuxuan Wu;G. Al
  • 通讯作者:
    G. Al
ALOHA 2: An Enhanced Low-Cost Hardware for Bimanual Teleoperation
ALOHA 2:用于双手遥控操作的增强型低成本硬件
  • DOI:
    10.48550/arxiv.2405.02292
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aloha 2 Team;Jorge Aldaco;Travis Armstrong;Robert Baruch;Jeff Bingham;Sanky Chan;Kenneth Draper;Debidatta Dwibedi;Chelsea Finn;Pete Florence;Spencer Goodrich;Wayne Gramlich;Torr Hage;Alexander Herzog;Jonathan Hoech;Thinh Nguyen;Ian Storz;B. Tabanpour;Leila Takayama;Jonathan Tompson;Ayzaan Wahid;Ted Wahrburg;Sichun Xu;Sergey Yaroshenko;Kevin Zakka;Tony Zhao
  • 通讯作者:
    Tony Zhao

Chelsea Finn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Autonomous Robust & Rapid Processes for the Machining of Aerospace Specific Parts & Components
自主稳健
  • 批准号:
    10052735
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    BEIS-Funded Programmes
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235232
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Robust and autonomous machine learning on board a miniature satellite
微型卫星上的鲁棒自主机器学习
  • 批准号:
    NI220100072
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    National Intelligence and Security Discovery Research Grants
RINGS: Enabling Wireless Edge-cloud Services via Autonomous Resource Allocation and Robust Physical Layer Technologies
RINGS:通过自主资源分配和强大的物理层技术实现无线边缘云服务
  • 批准号:
    2148128
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Robust Autonomous Landing of Multirotor Unmanned Aerial Vehicles on Static and Moving Platforms
多旋翼无人机在静态和移动平台上的鲁棒自主着陆
  • 批准号:
    580353-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Alliance Grants
Robust and Scalable Autonomous Landing for Drones
强大且可扩展的无人机自主着陆
  • 批准号:
    LP210100337
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Linkage Projects
CAREER: Distributionally Robust Learning, Control, and Benefits Analysis of Information Sharing for Connected and Autonomous Vehicles
职业:互联和自动驾驶车辆信息共享的分布式鲁棒学习、控制和效益分析
  • 批准号:
    2047354
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Robust localization for an autonomous vehicle by sensing information selection based on the divergence between probability distributions
通过基于概率分布之间的差异进行传感信息选择来实现自动驾驶车辆的鲁棒定位
  • 批准号:
    21K12076
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Towards a Theory of Robust Learning & Control for Safety-Critical Autonomous Systems
职业生涯:迈向稳健学习理论
  • 批准号:
    2045834
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了