CAREER: Unlocking Recalcitrant Carbon to Enhance Denitrification of Nonpoint Source Nitrogen in Woodchip Bioreactors
职业:释放顽固碳以增强木片生物反应器中非点源氮的反硝化
基本信息
- 批准号:2237947
- 负责人:
- 金额:$ 54.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nonpoint sources of nitrogen (N) such as nitrate from agricultural and stormwater runoff are among the most intractable drivers of pollution and water quality impairments in the United States, contributing to eutrophication, harmful algal blooms, and hypoxia, which adversely impact the ecological health, economic, and recreational values of the Nation’s surface water systems including lakes, rivers, and large estuaries such as the Chesapeake Bay and the Gulf of Mexico. Woodchip bioreactors (WBRs) have emerged as promising and scalable biofiltration systems for removing nitrate from agricultural and stormwater runoff. Most WBRs consist of subsurface trenches filled with a carbon source (woodchip) designed to stimulate microbial denitrification (DN) to remove nitrate from a flowing runoff stream prior to its discharge into a receiving surface water system. The effectiveness of current WBRs is limited by the slow release of the bioavailable carbon (C) from the woodchip media required to support the growth and metabolism of DN bacteria. The overarching goal of this CAREER project is to probe, elucidate, and leverage the redox biogeochemical reactions that control the release and mobilization of bioavailable C from woodchip media to stimulate DN in WBRs. To advance this goal, the Principal Investigator proposes to test the hypothesis that oxic-anoxic cycling during the operation of a woodchip bioreactor enhances denitrification by accelerating the decomposition of recalcitrant, lignocellulosic woodchip biomass into labile C during oxic periods to stimulate the growth and metabolic activity of DN microorganisms during subsequent anoxic periods. The successful completion of this project will benefit society through the generation of new fundamental knowledge to support the development and deployment of more efficient and sustainable solutions to manage and mitigate nonpoint sources of nitrate pollution. Additional benefits to society will be achieved through student education and training including the mentoring of a graduate student at Cornell University. Biogeochemical reactions of iron (Fe) and manganese (Mn) minerals at redox interfaces play an important role in the decomposition of lignocellulosic biomass (LB) in the environment, and mechanistic understanding of these organo-mineral interactions is rapidly evolving. This CAREER project will investigate and unravel the redox active biogeochemical reactions that control the release of labile carbon (C) from the degradation of woodchip media with the goal of leveraging this new knowledge to improve the performance of woodchip bioreactors (WBRs) that utilize LB as C source to stimulate the growth of denitrifying (DN) microorganisms to remove nitrate from agricultural and stormwater runoff. The specific objectives of the research are to 1) probe and elucidate Mn- and Fe- driven redox reactions that control the release of dissolved organic carbon (DOC) from woodchip media in model WBRs using state-of-the-art characterization techniques including synchrotron-based spectroscopy and microscopy (e.g., micro-XANES and micro-XRF) and advanced mass spectrometry (e.g., FT-ICR MS); 2) assess and evaluate the effects of enzymatic vs. nonenzymatic transformations on the quantity and quality of DOC released from woodchip media in model WBRs; and 3) develop and validate process-based models to simulate the effects of redox fluctuations and cycling on the release of DOC and DN efficiency in flow-through WBRs. The successful completion of this project has the potential for transformative impact through the generation of new fundamental knowledge to advance the design and implementation of more efficient WBRs for the removal of nitrate from agricultural and stormwater runoff. To implement the educational and outreach activities of this CAREER project, the Principal Investigator (PI) proposes to leverage existing programs and resources at Cornell University to develop and deliver new hands-on experiential learning opportunities in environmental engineering (EE) for students from underrepresented groups. The proposed activities will include i) an outreach program to high school students and teachers from rural areas of Central New York State and ii) a summer training and mentorship program for undergraduate and community college students. In addition, the PI proposes to leverage the project resources and research findings to develop and integrate new course modules on sensing and control of water infrastructure systems for nitrogen pollution removal into the EE undergraduate curriculum at Cornell University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氮(N)的非点源(例如来自农业和雨水径流的硝酸盐)是美国污染和水质损害的最棘手的驱动因素之一,导致富营养化、有害藻类大量繁殖和缺氧,这对国家地表水系统(包括湖泊、河流、湖泊、湖泊、河流、湖泊和湖泊)的生态健康、经济和娱乐价值产生不利影响。以及大型河口,如切萨皮克湾和墨西哥湾。木屑生物反应器(WBR)已成为有前途的和可扩展的生物过滤系统,用于去除农业和雨水径流中的硝酸盐。大多数WBR由填充碳源(木屑)的地下沟渠组成,旨在刺激微生物反硝化作用(DN),以在将其排放到接收地表水系统之前从流动的径流中去除硝酸盐。目前WBR的有效性受到支持DN细菌生长和代谢所需的木屑培养基中生物可利用碳(C)缓慢释放的限制。这个CAREER项目的总体目标是探索,阐明和利用氧化还原生物化学反应,控制木片介质中生物可利用C的释放和动员,以刺激WBR中的DN。为了推进这一目标,主要研究者提出了测试的假设,即在木片生物反应器的操作过程中,缺氧-缺氧循环,通过加速分解柠檬酸,木质纤维素木片生物质到不稳定的碳在好氧期间,以刺激DN微生物在随后的缺氧期间的生长和代谢活动,增强反硝化作用。该项目的成功完成将通过产生新的基础知识来支持开发和部署更有效和可持续的解决方案来管理和减轻硝酸盐污染的非点源,从而使社会受益。通过学生教育和培训,包括康奈尔大学一名研究生的辅导,将为社会带来更多好处。铁(Fe)和锰(Mn)矿物在氧化还原界面处的生物地球化学反应在环境中木质纤维素生物质(LB)的分解中起着重要作用,并且对这些有机矿物相互作用的机理理解正在迅速发展。这个CAREER项目将调查和解开控制不稳定碳(C)从木片介质降解释放的氧化还原活性生物化学反应,目的是利用这一新知识来提高木片生物反应器(WBR)的性能,利用LB作为C源来刺激微生物的生长,以去除农业和雨水径流中的硝酸盐。该研究的具体目标是:1)探测和阐明Mn和Fe驱动的氧化还原反应,该反应使用最先进的表征技术,包括基于同步加速器的光谱学和显微镜(例如,微XANES和微XRF)和高级质谱(例如,FT-ICR MS); 2)评估和评价酶与非酶转化对模型WBR中木片介质释放DOC的数量和质量的影响; 3)开发和验证基于过程的模型,以模拟氧化还原波动和循环对流通式WBR中DOC释放和DN效率的影响。该项目的成功完成有可能通过产生新的基础知识来推动更有效的WBR的设计和实施,从而产生变革性的影响,以去除农业和雨水径流中的硝酸盐。为了实施该职业项目的教育和外展活动,首席研究员(PI)建议利用康奈尔大学的现有项目和资源,为来自代表性不足的学生开发和提供环境工程(EE)方面新的实践体验式学习机会群体。拟议的活动将包括:i)一个面向纽约州中部农村地区高中学生和教师的外联方案; ii)一个面向本科生和社区学院学生的暑期培训和辅导方案。此外,PI建议利用项目资源和研究成果,开发和整合新的课程模块,对水基础设施系统的传感和控制,以去除氮污染到康奈尔大学的环境工程本科课程。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Reid其他文献
Lost Letters: Using the Lost-letter Technique to Teach Social Research Methods
丢失的信件:利用丢失的信件技术教授社会研究方法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Matthew Reid - 通讯作者:
Matthew Reid
Explaining the negative impact of financial concern on undergraduates’ academic outcomes: evidence for stress and belonging as mediators
解释财务问题对本科生学业成绩的负面影响:压力和归属感作为中介的证据
- DOI:
10.1080/0309877x.2019.1664732 - 发表时间:
2019 - 期刊:
- 影响因子:2.3
- 作者:
Matthew Reid;D. Jessop;E. Miles - 通讯作者:
E. Miles
Sanitation and climate
卫生与气候
- DOI:
10.1038/s41558-020-0787-z - 发表时间:
2020-06-01 - 期刊:
- 影响因子:27.100
- 作者:
Matthew Reid - 通讯作者:
Matthew Reid
Determination of dielectric function of water in THz region in wood cell wall result in an accurate prediction of moisture content
测定木材细胞壁太赫兹区域的水介电函数可以准确预测水分含量
- DOI:
10.1007/s10762-019-00594-0 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Han Wang;Tetsuya Inagaki;Ian Hartley;Satoru Tsuchikawa;Matthew Reid - 通讯作者:
Matthew Reid
Understanding the consequences of undergraduate financial concern and its implications for academic outcomes
了解本科生财务问题的后果及其对学业成绩的影响
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Matthew Reid - 通讯作者:
Matthew Reid
Matthew Reid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Reid', 18)}}的其他基金
Arsenic Complexation with Reduced Organosulfur Moieties in Soil Organic Matter: Implications for Arsenic Oxidation via Biotic and Abiotic Pathways
土壤有机质中砷与减少的有机硫部分的络合:对生物和非生物途径砷氧化的影响
- 批准号:
1905175 - 财政年份:2019
- 资助金额:
$ 54.62万 - 项目类别:
Standard Grant
Biotic and Abiotic Controls on Nitrous Oxide Dynamics in Denitrifying Bioreactors
反硝化生物反应器中一氧化二氮动力学的生物和非生物控制
- 批准号:
1804975 - 财政年份:2018
- 资助金额:
$ 54.62万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
- 批准号:
2426560 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Standard Grant
Unlocking the mechanisms of vibro-acoustic communication in termites
解锁白蚁振动声学通讯机制
- 批准号:
DP240101536 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Discovery Projects
Unlocking the potential of mini-MASS in UK waters
释放英国水域迷你 MASS 的潜力
- 批准号:
10109319 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Launchpad
Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
- 批准号:
NE/Y001397/1 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Research Grant
Unlocking the potential of single-photon wide-field microscopy
释放单光子宽视场显微镜的潜力
- 批准号:
EP/Y022491/1 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Research Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Research Grant
Unlocking the archive: reuniting Indigenous languages and their communities
解锁档案:重新统一土著语言及其社区
- 批准号:
IM230100544 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Mid-Career Industry Fellowships
Unlocking mine waste potential: carbon sequestration and metals extraction
释放矿山废物潜力:碳封存和金属提取
- 批准号:
LP230100371 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Linkage Projects
Unlocking self-healing bio-concrete through multiscale modelling
通过多尺度建模解锁自愈生物混凝土
- 批准号:
DP240100851 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Discovery Projects
Unlocking the ion selectivity of lithium superionic conductor membranes
解锁锂超离子导体膜的离子选择性
- 批准号:
DP240100497 - 财政年份:2024
- 资助金额:
$ 54.62万 - 项目类别:
Discovery Projects