CAREER: Inference on Macroeconomic Heterogeneity
职业:宏观经济异质性推断
基本信息
- 批准号:2238049
- 负责人:
- 金额:$ 40.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent research on the aggregate economy tries to understand how aggregate economic performance has differential impacts on individual economic units. This is partly due to increased access to detailed micro-level data sets, increased and cheaper computing power, and partly due to growing concerns among policymakers about inequality. While much progress has been made in both theory and empirical methods of understanding the links between inequality and aggregate economic activity, current statistical methods used by academic researchers, central banks, and other policy institutions are not designed to account for these differences. This proposal consists of four projects that will develop new and modern econometric tools to improve empirical research on differential effects of macroeconomic outcomes. The project will also develop video materials to educate students and practitioners in these econometric tools. The results of this research project will improve macroeconomics policies that increase economic growth as well as reduce inequality, thus improve the well-being of the average American. This CAREER research proposal will use three projects to develop new econometric methods for studying heterogeneity in macroeconomics. The first project develops an inference procedure with formal coverage that guarantees visualizing multi-dimensional cross-sectional heterogeneity, such as heterogeneity in dynamic response profiles across groups of households or firms. The second project provides a causal reinterpretation of popular methods for estimating temporal heterogeneity and nonlinearities in time series data, such as state- or sign-dependence of impulse responses. The third project runs a large-scale simulation study of impulse response estimators and provides quantitative recommendations on how to choose between the many available procedures. Finally, the project proposes a plan for developing a collection of interactive educational materials on modern macro-econometric methods. Besides the contribution to econometric theory, the results of this research project will also improve macroeconomics policies and increase economic growth as well as reduce inequality, thus improve the well-being of the average American.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近对总量经济的研究试图了解总量经济表现如何对单个经济单位产生不同的影响。这部分是由于获得详细的微观层面数据集的机会增加,计算能力增加和更便宜,部分是由于政策制定者对不平等的担忧日益增加。虽然在理解不平等与总体经济活动之间联系的理论和实证方法方面都取得了很大进展,但学术研究人员、中央银行和其他政策机构目前使用的统计方法并不是为了解释这些差异。 该提案由四个项目组成,这些项目将开发新的现代计量经济工具,以改进对宏观经济结果差异影响的实证研究。该项目还将制作录像材料,教育学生和从业人员使用这些计量经济学工具。 该研究项目的结果将改善宏观经济政策,增加经济增长,减少不平等,从而改善普通美国人的福祉。这个职业研究计划将使用三个项目来开发新的计量经济学方法来研究宏观经济学中的异质性。 第一个项目开发了一个推理程序,正式的覆盖面,保证可视化多维横截面异质性,如异质性的动态响应配置文件跨家庭或企业组。第二个项目提供了一个因果重新解释流行的方法,估计时间序列数据的时间异质性和非线性,如状态或符号依赖的脉冲响应。 第三个项目对脉冲响应估计器进行了大规模的模拟研究,并就如何在众多可用程序中进行选择提供了定量建议。最后,该项目提出了一项计划,以编制一套关于现代宏观经济计量方法的交互式教材。 除了对计量经济学理论的贡献外,该研究项目的成果还将改善宏观经济政策,促进经济增长,减少不平等,从而改善普通美国人的福祉。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikkel Plagborg-Moller其他文献
Mikkel Plagborg-Moller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikkel Plagborg-Moller', 18)}}的其他基金
Econometric Methods for Exploiting New Data in Macroeconomics
利用宏观经济学新数据的计量经济学方法
- 批准号:
1851665 - 财政年份:2019
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Research Grant
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Research Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
AI4PhotMod - Artificial Intelligence for parameter inference in Photosynthesis Models
AI4PhotMod - 用于光合作用模型中参数推断的人工智能
- 批准号:
BB/Y51388X/1 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Research Grant
CSR: Small: Latency-controlled Reduction of Data Center Expenses for Handling Bursty ML Inference Requests
CSR:小:通过延迟控制减少数据中心处理突发 ML 推理请求的费用
- 批准号:
2336886 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
- 批准号:
2347177 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant