CAREER: Statistics through the Sum of Squares Lens

职业:通过平方和透镜进行统计

基本信息

  • 批准号:
    2238080
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Statistics with large data sets of high-dimensional observations (e.g., images, videos, genomes) forms the basis for modern machine learning and data science. Despite extraordinary successes in practice and the potential for tremendous further impact, theoretical understanding of the basic algorithmic building blocks for high-dimensional statistics remains limited. Unlike in traditional (low-dimensional) statistics, the key bottleneck is not how much data is available but how much computational power is available to process it. The central aim of this proposal is to advance a theory of algorithmic statistics which can address the core questions: which problems in high-dimensional statistics have computationally efficient algorithms? And, what are the best -- most accurate, most robust, fastest, etc. -- algorithms for such problems? Pursuing answers to these questions is likely to lead both to foundational algorithmic innovations as well as to a deeper understanding of the fundamental limitations of efficient computation in statistical settings, which is a prerequisite for understanding when a given algorithm is the best possible at the task it performs. Furthermore, the curriculum development and mentoring components of this project will disseminate state-of-the-art algorithm design techniques to the broader scientific community via courses, lectures, and videos and train the next generation of algorithm designers for science and industry.This project will develop the Sum of Squares method (SoS) as a powerful tool for algorithm design in statistical settings and as a lens on fundamental limitations. SoS is a problem-independent approach to designing algorithms with strong provable guarantees, generalizing tools such as linear programming, and eigenvalue/eigenvector methods. SoS has already broadly impacted algorithms in numerous areas: combinatorial optimization, quantum information, cryptography, control theory, high-dimensional statistics, and more. Even within high-dimensional statistics, SoS already has many applications in clustering, robust estimation, and tensor decomposition (the inverse problem underlying the method of moments), to name only a few. However, knowledge of SoS remains incomplete: there is tremendous potential to push the frontier of efficient algorithms by studying SoS, including in high-dimensional statistics. The core technical thrust of this project will be developing novel algorithms based on SoS as well as the mathematical tools to understand the guarantees and fundamental limitations of those algorithms. The project will focus on algorithm design in two specific domains, privacy-preserving data analysis and Bayesian inference, where the investigator believes that there are opportunities for new algorithms with strong provable guarantees to offer new insights on algorithm design broadly, as well as to have a near-term impact on practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有大量高维观测数据集(如图像、视频、基因组)的统计学构成了现代机器学习和数据科学的基础。尽管在实践中取得了非凡的成功,并有可能产生巨大的进一步影响,但对高维统计的基本算法构建模块的理论理解仍然有限。与传统的(低维)统计不同,关键的瓶颈不是有多少数据可用,而是有多少计算能力可用来处理这些数据。本提案的中心目标是提出一种算法统计理论,该理论可以解决以下核心问题:高维统计中的哪些问题具有计算效率高的算法?对于这样的问题,最好的——最准确、最健壮、最快等等——算法是什么?寻求这些问题的答案可能会导致基础算法的创新,也可能导致对统计设置中有效计算的基本限制的更深入的理解,这是理解给定算法在其执行的任务中何时是最佳的先决条件。此外,该项目的课程开发和指导部分将通过课程、讲座和视频向更广泛的科学界传播最先进的算法设计技术,并为科学和工业培训下一代算法设计师。该项目将开发平方和方法(SoS),作为统计设置中算法设计的强大工具,并作为基本限制的镜头。SoS是一种独立于问题的方法,用于设计具有强可证明保证的算法,推广工具如线性规划和特征值/特征向量方法。SoS已经广泛地影响了许多领域的算法:组合优化、量子信息、密码学、控制理论、高维统计等等。甚至在高维统计中,SoS已经在聚类、鲁棒估计和张量分解(矩量方法背后的逆问题)中有许多应用,仅举几例。然而,关于SoS的知识仍然不完整:通过研究SoS,包括在高维统计中,有巨大的潜力来推动高效算法的前沿。该项目的核心技术重点将是开发基于SoS的新算法以及数学工具,以了解这些算法的保证和基本限制。该项目将专注于两个特定领域的算法设计,即保护隐私的数据分析和贝叶斯推理,研究者认为,具有强大可证明保证的新算法有机会为算法设计提供广泛的新见解,并对实践产生近期影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions
亚高斯分布的快速、样本效率高、仿射不变的私有均值和协方差估计
Robustness Implies Privacy in Statistical Estimation
稳健性意味着统计估计中的隐私
The Full Landscape of Robust Mean Testing: Sharp Separations between Oblivious and Adaptive Contamination
稳健均值检验的全貌:忽视污染和适应性污染之间的鲜明区别
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Hopkins其他文献

Differential and Adjustable Stiffness Leaf Spring Ankle Foot Orthoses Enhance Gait Propulsion and Task Versatility in Cerebral Palsy
  • DOI:
    10.1007/s10439-025-03773-4
  • 发表时间:
    2025-07-14
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Collin D. Bowersock;Emmanuella A. Tagoe;Samuel Hopkins;Shanpu Fang;Zachary F. Lerner
  • 通讯作者:
    Zachary F. Lerner

Samuel Hopkins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Hopkins', 18)}}的其他基金

PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1802920
  • 财政年份:
    2018
  • 资助金额:
    $ 65万
  • 项目类别:
    Fellowship Award

相似海外基金

New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
  • 批准号:
    23K03210
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the gas accretion processes onto the supermassive black holes through the spatial statistics of AGN
通过活动星系核的空间统计研究超大质量黑洞的气体吸积过程
  • 批准号:
    20K22360
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
CAREER: Extracting principles of neural computation from large scale neural recordings through neural network theory and high dimensional statistics
职业:通过神经网络理论和高维统计从大规模神经记录中提取神经计算原理
  • 批准号:
    1845166
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Invigorating Statistics Teacher Education Through Professional Online Learning (InSTEP)
通过专业在线学习振兴统计教师教育 (InSTEP)
  • 批准号:
    1908760
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: Applied Algebraic Statistics through R
合作研究:CDS
  • 批准号:
    1714752
  • 财政年份:
    2017
  • 资助金额:
    $ 65万
  • 项目类别:
    Interagency Agreement
Predictive formulation of high solids content suspensions through understanding the statistics of flow-induced jamming
通过了解流动引起的干扰的统计数据来预测高固体含量悬浮液的配方
  • 批准号:
    1859217
  • 财政年份:
    2017
  • 资助金额:
    $ 65万
  • 项目类别:
    Studentship
CAREER: Understanding Vision and Natural Motion Statistics Through the Lens of Prediction
职业:通过预测的视角理解视觉和自然运动统计
  • 批准号:
    1652617
  • 财政年份:
    2017
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: Applied Algebraic Statistics through R
合作研究:CDS
  • 批准号:
    1622449
  • 财政年份:
    2016
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Research on health care resource distribution through secondary use of questionnaire information of statistics
统计问卷信息二次利用的卫生保健资源配置研究
  • 批准号:
    16K00432
  • 财政年份:
    2016
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Prediction of antigenic evolution of influenza viruses through Bayesian estimation using statistics on strings
使用字符串统计通过贝叶斯估计预测流感病毒的抗原进化
  • 批准号:
    16H02863
  • 财政年份:
    2016
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了