CAREER: Improving Machine Learning Education through Data-driven Support for Pipeline Design and Implementation

职业:通过数据驱动的管道设计和实施支持改善机器学习教育

基本信息

  • 批准号:
    2238108
  • 负责人:
  • 金额:
    $ 64.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2028-09-30
  • 项目状态:
    未结题

项目摘要

Machine Learning (ML) is a powerful computational method that allows computers to automatically learn patterns, or models, from data to complete complex tasks such as diagnosing diseases from medical images, translating languages, or holding human-level chatbot conversations. These technologies have incredible potential to improve lives but can also cause harm if they are not designed thoughtfully. Learning how to create ML models, and how to do so in an ethical way, is therefore an increasingly important skill across STEM disciplines. However, ML is also a challenging subject for university students to learn, and researchers have only just begun to explore effective practices for ML education. Therefore, the goal of this project is to discover new technologies that can improve student learning in ML classrooms, and to advance our understanding of how students learn ML. Specifically, the project will develop new algorithms that generate personalized feedback, hints, and examples to support students in designing effective ML models, implementing them as code, and reflecting on the ethical implications of their design choices. These help features will be automated, allowing them to scale to classrooms of any size, supporting students even when the instructor is unavailable. This project will evaluate and improve these technologies through studies in three different classrooms over five years, potentially improving outcomes for over 1,500 students. Additionally, by analyzing log data, surveys, interviews, and student outcomes, this project will advance researchers' understanding of how students learn ML and inform the design of interventions to support them. The project will have further impact by developing and distributing an "ML for Social Good" curriculum and by disseminating the technologies it develops through multiple channels, including professional development workshops for 16 instructors.This project will discover methods for supporting students in learning to design and implement open-ended ML pipelines. It will do so through novel, data-driven algorithms that generate personalized feedback, hints, and examples to support students. These algorithms will use trace data from prior students to generate support for future students, effectively using advances in ML to support ML education. While prior data-driven support is primarily used in early computer science courses to support novices, the proposed research will advance these techniques to support more advanced programmers working on complex and open-ended ML projects. The three thrusts of this proposal will answer fundamental questions in ML education research: Thrust 1 will investigate the value of an explicit ML design process that separates planning from implementation and will explore how a digital interface can scaffold this process and facilitate instructor feedback. Thrust 2 will investigate how to design automated hints and feedback to effectively support ML pipeline design and the comparative affordances of immediate algorithmic help vs delayed instructor help. Thrust 3 will explore how students use, integrate, and learn from programming examples when implementing ML pipeline code and will develop methods to personalize these examples using student data. This project will evaluate the impact of automated support in laboratory and classroom studies, reaching hundreds of students each semester across multiple courses and instructors. This research will make contributions to the fields of computing and ML education research through systematic analysis of students' behavior and artifacts to further our understanding of the processes by which learners acquire and demonstrate knowledge when constructing ML pipelines. The project will also advance techniques for automated programming and design feedback, which will build a foundation for future research supporting other advanced computing courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)是一种强大的计算方法,允许计算机自动从数据中学习模式或模型,以完成复杂的任务,例如从医学图像诊断疾病,翻译语言或进行人类级别的聊天机器人对话。这些技术在改善生活方面具有令人难以置信的潜力,但如果设计不当,也会造成伤害。因此,学习如何创建ML模型,以及如何以道德的方式这样做,是STEM学科中越来越重要的技能。然而,ML对于大学生来说也是一个具有挑战性的课题,研究人员才刚刚开始探索ML教育的有效实践。因此,该项目的目标是发现可以改善学生在ML教室中学习的新技术,并促进我们对学生如何学习ML的理解。具体来说,该项目将开发新的算法,生成个性化的反馈,提示和示例,以支持学生设计有效的ML模型,将其作为代码实现,并反思其设计选择的道德影响。这些帮助功能将自动化,使他们能够扩展到任何规模的教室,即使在教师不可用时也能为学生提供支持。该项目将在五年内通过在三个不同的教室进行研究来评估和改进这些技术,可能会改善1,500多名学生的成果。此外,通过分析日志数据、调查、访谈和学生成果,该项目将促进研究人员对学生如何学习ML的理解,并为支持他们的干预措施的设计提供信息。该项目将通过开发和分发“ML for Social Good”课程,并通过多种渠道传播其开发的技术,包括为16名教师举办的专业发展研讨会,进一步发挥影响力。该项目将探索支持学生学习设计和实施开放式ML管道的方法。它将通过新颖的数据驱动算法来实现这一目标,这些算法可以生成个性化的反馈、提示和示例来支持学生。这些算法将使用以前学生的跟踪数据为未来的学生提供支持,有效地利用ML的进步来支持ML教育。虽然以前的数据驱动支持主要用于早期计算机科学课程,以支持新手,但拟议的研究将推进这些技术,以支持从事复杂和开放式ML项目的更高级程序员。该提案的三个重点将回答ML教育研究中的基本问题:重点1将调查明确的ML设计过程的价值,该过程将计划与实施分开,并将探索数字接口如何支撑这一过程并促进教师反馈。第二部分将研究如何设计自动化提示和反馈,以有效地支持ML管道设计,以及即时算法帮助与延迟教师帮助的比较启示。Thrust 3将探索学生在实现ML管道代码时如何使用,集成和学习编程示例,并将开发使用学生数据个性化这些示例的方法。该项目将评估自动化支持在实验室和课堂研究中的影响,每学期将有数百名学生参加多门课程和教师。这项研究将通过对学生行为和工件的系统分析,为计算和ML教育研究领域做出贡献,以进一步了解学习者在构建ML管道时获取和展示知识的过程。该项目还将推进自动编程和设计反馈的技术,这将为未来支持其他高级计算课程的研究奠定基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomason Price其他文献

Thomason Price的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomason Price', 18)}}的其他基金

Using Fine-grained Programming Trace Data to Inform Disciplinary Models of Self-Regulated Learning in Computing Education
使用细粒度编程跟踪数据为计算机教育中的自我调节学习的学科模型提供信息
  • 批准号:
    2300612
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: An Infrastructure for Sustainable Innovation and Research in Computer Science Education
合作研究:CCRI:新:计算机科学教育可持续创新和研究的基础设施
  • 批准号:
    2213792
  • 财政年份:
    2022
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Standard Grant
Intelligent Support for Creative, Open-ended Programming Projects
对创意、开放式编程项目的智能支持
  • 批准号:
    1917885
  • 财政年份:
    2019
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Collaborative R&D
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
  • 批准号:
    EP/X027732/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Research Grant
Optimising CNC Machine Tool Coolant Fluid condition to prolong usage and efficiency of an expensive essential resource thereby reducing cost, improving production quality and protecting operators using a unique and innovative Coolant Monitoring Analyser
使用独特和创新的冷却液监测分析仪优化数控机床冷却液条件,延长昂贵的重要资源的使用时间和效率,从而降低成本、提高生产质量并保护操作员
  • 批准号:
    10075142
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Grant for R&D
Machine Learning for Improving Product Quality in Advanced Manufacturing
机器学习提高先进制造中的产品质量
  • 批准号:
    10073076
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Grant for R&D
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
  • 批准号:
    10053966
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Collaborative R&D
Improving Software Defined Networking with Machine Learning
通过机器学习改进软件定义网络
  • 批准号:
    22KF0428
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Improving Ultrasonic Imaging using Machine Learning
使用机器学习改进超声成像
  • 批准号:
    2889657
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Studentship
Characterising and improving understanding of mesoscale convective systems over south-east Asia using machine learning
使用机器学习表征和提高对东南亚中尺度对流系统的理解
  • 批准号:
    2886050
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Studentship
CSR: Medium: Improving the Interface between Machine Learning and Software Systems
CSR:中:改进机器学习和软件系统之间的接口
  • 批准号:
    2313190
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Standard Grant
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
  • 批准号:
    2311582
  • 财政年份:
    2023
  • 资助金额:
    $ 64.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了