CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip

职业:在集成光子芯片上生成和检测大规模量子纠缠

基本信息

  • 批准号:
    2238096
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-15 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Quantum information and quantum computing have long established revolutionary promises, such as exponential speedup of difficult to near-impossible computations. They can be directly applied to attack some of society’s biggest challenges through modeling atoms and molecules, such as nitrogen fixation for fertilizer production, room-temperature superconductivity, and pharmaceuticals. It has been recognized that millions to billions of raw qubits are required to realize practical, universal, and fault-tolerant quantum computing. Yet there exists no established paradigm for building such highly scalable quantum systems. Therefore, achieving scalability and maintaining high coherence at a large scale are two of the central challenges to quantum information processing. Many existing quantum systems, like superconducting qubits and trapped ion qubits, are scaled up qubit by qubit due to the lack of multiplexing: one has to fabricate N more physical structures to add N more qubits. Thus, to further increase the number of qubits is exponentially challenging because of the power of the compound yield rate. Quantum optics provides a promising alternative thanks to its capability of photonic multiplexing in spectral, temporal, and spatial domains, meaning that a large number of quantum modes in frequency, time, or spatial domain can be generated with just a few devices. In order to reach the next step, quantum-integrated technology must become a reality, where a massive number of photonic elements are integrated to process the large number of quantum modes. This proposal aims to develop methods for large-scale multipartite entanglement generation, where all critical elements, including entanglement generation and detection, will be integrated on the same chip. The proposed work can open up new avenues in the fields of quantum computing, networking, and sensing.The proposed effort aims to develop methods to generate large-scale multipartite entanglement states with integrated photonic circuits. The approach is based on high-Q optical microresonators, where hundreds of longitude optical modes with their frequencies separated by free-spectral-range will serve as frequency multiplexed quantum modes to encode quantum information through the continuous-variable approach. Unconditional entanglement among the quantum modes will be created by the Kerr parametric process in microresonators and quantum interference among different microresonators. To pursue “quantum experiment on a chip,” balanced photodiodes with high quantum efficiency will be heterogeneously integrated with the entanglement generation chip, which will minimize excess loss and phase fluctuation between quantum state generation and detection to preserve the quality of entanglement. This project will not only create a quantum leap in the scale and quality of multipartite entanglement generated with integrated photonic circuits, but more importantly, it will be a significant step forward in the miniaturization and applicability of continuous-variable quantum optics and push the state-of-art for applications in quantum computing, communication, and sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息和量子计算早已确立了革命性的承诺,例如困难到几乎不可能的计算的指数加速。它们可以直接应用于通过模拟原子和分子来应对社会的一些最大挑战,例如用于肥料生产的固氮,室温超导和制药。人们已经认识到,需要数百万到数十亿个原始量子比特来实现实用的、通用的和容错的量子计算。然而,目前还没有建立这种高度可扩展的量子系统的范式。因此,实现可扩展性和保持大规模的高相干性是量子信息处理的两个核心挑战。许多现有的量子系统,如超导量子比特和捕获离子量子比特,由于缺乏多路复用,量子比特被按比例放大:必须制造N个物理结构来添加N个量子比特。因此,由于化合物产率的功率,进一步增加量子比特的数量是具有指数挑战性的。量子光学提供了一个有前途的替代方案,这要归功于它在光谱、时间和空间域中的光子复用能力,这意味着可以用几个器件产生频率、时间或空间域中的大量量子模式。为了达到下一步,量子集成技术必须成为现实,其中大量的光子元件被集成以处理大量的量子模式。该提案旨在开发大规模多体纠缠产生的方法,其中所有关键元素,包括纠缠产生和检测,将集成在同一芯片上。这项工作将为量子计算、网络和传感等领域开辟新的途径。这项工作的目标是开发利用集成光子电路产生大规模多体纠缠态的方法。该方法基于高Q光学微谐振器,其中数百个纵向光学模式的频率由自由光谱范围分离,将作为频率复用量子模式,通过连续变量方法编码量子信息。微谐振腔中的克尔参量过程和不同微谐振腔之间的量子干涉将产生量子模间的无条件纠缠。为了追求“芯片上的量子实验”,具有高量子效率的平衡光电二极管将与纠缠产生芯片异质集成,这将最大限度地减少量子态产生和检测之间的过度损耗和相位波动,以保持纠缠的质量。该项目不仅将在集成光子电路产生的多体纠缠的规模和质量上实现量子飞跃,更重要的是,它将在连续可变量子光学的小型化和适用性方面迈出重要一步,并推动量子计算,通信,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generation of squeezed quantum microcombs with silicon nitride integrated photonic circuits
利用氮化硅集成光子电路生成挤压量子微梳
  • DOI:
    10.1364/optica.498670
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Jahanbozorgi, Mandana;Yang, Zijiao;Sun, Shuman;Chen, Haoran;Liu, Ruxuan;Wang, Beichen;Yi, Xu
  • 通讯作者:
    Yi, Xu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xu Yi其他文献

An Efficient System for Ds Transposon Tagging in Brachypodiurn distachyon
二穗短柄藻 Ds 转座子标记的高效系统
  • DOI:
    10.1104/pp.18.00875
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Wu Hongyu;Xue Xiaodong;Qin Caihua;Xu Yi;Guo Yuyu;Li Xiang;Lv Wei;Li Qinxia;Mao Chuangxue;Li Luzhao;Zhao Suzhen;Qi Xiaoquan;An Hailong
  • 通讯作者:
    An Hailong
Microchannel-Based Surface-Enhanced Raman Spectroscopy for Integrated Microfluidic Analysis
用于集成微流体分析的基于微通道的表面增强拉曼光谱
  • DOI:
    10.1366/13-07146
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Lai Chun-hong;Chen Li;Chen Gang;Xu Yi;Wang Chun-yan
  • 通讯作者:
    Wang Chun-yan
Continuous Wavelet Analysis of Leaf Reflectance Improves Classification Accuracy of Mangrove Species
叶子反射率的连续小波分析提高了红树林物种的分类精度
  • DOI:
    10.3390/rs11030254
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Xu Yi;Wang Junjie;Xia Anquan;Zhang Kangyong;Dong Xuanyan;Wu Kaipeng;Wu Guofeng
  • 通讯作者:
    Wu Guofeng
Spectral projected gradient methods for generalized tensor eigenvalue complementarity problems
广义张量特征值互补问题的谱投影梯度法
  • DOI:
    10.1007/s11075-018-0522-2
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Yu Gaohang;Song Yisheng;Xu Yi;Yu Zefeng
  • 通讯作者:
    Yu Zefeng
Experimental study and modeling on effective thermal conductivity of EPS lightweight concrete
EPS轻质混凝土有效导热系数的实验研究与建模
  • DOI:
    10.1299/jtst.2016jtst0023
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Xu Yi;Jiang Linhua;Liu Jiaping;Zhang Yan;Xu Jinxia;He Gongqing
  • 通讯作者:
    He Gongqing

Xu Yi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
  • 批准号:
    EP/X016218/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
ERI: Non-Contact Ultrasound Generation and Detection for Tissue Functional Imaging and Biomechanical Characterization
ERI:用于组织功能成像和生物力学表征的非接触式超声波生成和检测
  • 批准号:
    2347575
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
  • 批准号:
    EP/X016749/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
On-chip microwave generation and detection with Josephson photonics
使用约瑟夫森光子学进行片上微波生成和检测
  • 批准号:
    DE240100590
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Early Career Researcher Award
A next generation smart insect trap combining novel sensors, targeted attractants and remote AI for enhanced pest detection and alerts
下一代智能昆虫捕捉器结合了新型传感器、针对性引诱剂和远程人工智能,可增强害虫检测和警报
  • 批准号:
    10084604
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Collaborative R&D
Next Generation Infectious Disease Diagnostics: Microfluidic-Free Gigapixel PCR with Self-Assembled Partitioning
下一代传染病诊断:具有自组装分区的无微流控千兆像素 PCR
  • 批准号:
    10682295
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Developing an integrated pipeline for routine generation of orthogonal GPCR-targeting nanobodies
开发用于常规生成正交 GPCR 靶向纳米抗体的集成管道
  • 批准号:
    10603669
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Understanding the Heterogeneity of Nanoscale Extracellular Vesicles, Exomeres, and Supermeres using Next Generation Optical Nanotweezers
使用下一代光学纳米镊子了解纳米级细胞外囊泡、外泌体和 Supermeres 的异质性
  • 批准号:
    10714221
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Nanoluciferase reporter phage for rapid phenotypic characterization of resistance to next-generation antimycobacterial agents
纳米荧光素酶报告噬菌体用于快速表征下一代抗分枝杆菌药物的耐药性
  • 批准号:
    10593796
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了