CAREER: Mechanistic Understanding and Strategies to Improve the Regeneration of Supported Nickel Catalysts for Methane Conversion
职业:提高甲烷转化负载型镍催化剂再生的机理理解和策略
基本信息
- 批准号:2238213
- 负责人:
- 金额:$ 59.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The acceleration of global warming has produced a pressing need to reduce greenhouse gas emissions despite the ever-increasing demand for energy. In the United States, natural gas combustion has become the No. 1 source of electricity generation. However, the carbon dioxide (CO2) associated with natural gas combustion, combined with methane emissions during its extraction and transport, still contributes to greenhouse gas emissions beyond levels required for energy sustainability. Two technologies - gas-to-liquids (GTL) and catalytic methane pyrolysis (CMP) – hold promise for producing hydrogen for both fuel and chemicals manufacturing while decreasing greenhouse gas emissions. However, catalyst deactivation due to carbon deposition and metal sintering are still major challenges in methane valorization reactions. Previous research studies have not explored process-based catalyst deactivation and regeneration mechanisms in sufficient depth to devise energy-efficient, effective regeneration strategies. To that end, the project will directly address fundamental knowledge gaps in the regeneration of prototypical supported nickel (Ni) catalysts to enable new options for extending methane catalyst lifetime, thus contributing to better carbon management and further reduction of greenhouse gas emissions during the transition to sustainable fuels and chemicals. Although the regeneration of spent methane conversion metal catalysts has been described phenomenologically, a comprehensive fundamental understanding of carbon gasification and metal redispersion has been lacking. This is partly due to conventional investigation methodologies in heterogeneous catalysis that focus mainly on the catalytic reaction kinetics and dynamics of molecules adsorbed on catalyst surfaces, not on the structural dynamics of solid catalysts. The project will combine state-of-the-art, in-situ environmental transmission electron microscopy (ETEM) with a branch of machine learning known as computer vision to directly monitor both carbon deposits and Ni catalyst structural changes under regeneration conditions. Advancement of fundamental understanding of spent metal catalyst regeneration will be achieved through three aims: 1) establish an operando methodology for high-throughput correlation of regeneration performance and structural evolution, 2) determine carbon gasification mechanisms and kinetics for optimized gasification conditions, and 3) determine metal redispersion mechanisms and support effects enabling a cyclic reaction-regeneration process. Successful integration of the three aims will establish direct correlations between the gasification kinetics and state of the catalyst during the carbon removal, gasification-induced sintering, and Ni redispersion sequence. The correlations will enable rational tuning of regeneration condition parameters to achieve complete carbon removal and effective Ni catalyst redispersion. These fundamental insights into rejuvenating spent Ni catalysts can lead to new practical regeneration strategies for other supported metal catalyst systems. Beyond the technical aspects of the project, the investigator will establish an interdisciplinary, practical, and inspiring program “The Amazing Life Cycle of Nanocatalysts.” The program will train a new generation of students in catalysis through activities integrating research into education, interactive workshops that excite and inspire students and K–12 teachers about STEM fields, and outreach efforts attracting and recruiting underrepresented students to engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管对能源的需求不断增加,但全球变暖的加速迫切需要减少温室气体排放。在美国,天然气混合物已成为发电的第一源。但是,与天然气混合物相关的二氧化碳(CO2)在提取和运输过程中与甲烷排放结合,仍然有助于温室气体排放,超出能源可持续性所需的水平。两种技术 - 气液(GTL)和催化甲烷热解(CMP) - 在减少温室气体排放的同时,有望为燃料和化学制造生产氢。然而,由于碳沉积和金属烧结而导致的催化剂停用仍然是甲烷价反应的主要挑战。先前的研究尚未探索基于过程的催化剂停用和再生机制,以设计能节能,有效的再生策略。为此,该项目将直接解决原型支持的镍(NI)催化剂再生中的基本知识差距,以实现新的选择,以延长甲烷催化剂寿命,从而有助于更好地减少碳管理,并在过渡到可持续燃料和化学物质的过渡过程中进一步减少温室气体的排放。尽管在现象学上已经描述了消费甲烷转化金属催化剂的再生,但缺乏对碳气化和金属重新分散的全面理解。这部分是由于异质催化中的常规投资方法主要集中于吸附在催化剂表面上的分子的催化反应动力学和动力学,而不是固体催化剂的结构动力学上。该项目将结合最先进的,原位环境传输电子显微镜(ETEM)和一个被称为计算机视觉的机器学习分支,以直接监测碳沉积物和在再生条件下的NI催化剂结构变化。通过三个目的,将实现对支出金属催化剂再生的基本理解的进步:1)建立一种以高通量相关性和结构进化的高通量相关性的操作方法,2)确定碳气化机制和动力学的优化气化条件,以及3)确定金属重新发射机制和支持促进反应的方法。成功整合这三个目标将在碳去除,气化引起的烧结和Ni重新分散序列之间建立气化动力学和催化剂状态之间的直接相关性。相关性将使再生条件参数的合理调整能够实现完全去除碳和有效的NI催化剂重新分散。这些对复兴消费的NI催化剂的基本见解可以为其他支持的金属催化剂系统提供新的实用再生策略。除了项目的技术方面,研究人员还将建立一个跨学科,实用和鼓舞人心的计划“纳米催化剂的惊人生命周期”。该计划将通过将研究纳入教育,激动和激发学生和K -12老师的互动研讨会的活动来培训新一代学生进行催化培训,并激发了有关STEM领域的教师,以及宣传工作吸引和招募了代表性不足的学生进行工程学。该奖项反映了NSF的法定任务,并通过评估基金会的智力效果,以诚实地支持支持,并诚实地支持了基金会的范围。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In-situ ETEM Observation of Competing Mechanisms for Filamentous Carbon Gasification
丝状碳气化竞争机制的原位 ETEM 观察
- DOI:10.1093/micmic/ozad067.663
- 发表时间:2023
- 期刊:
- 影响因子:2.8
- 作者:Nielsen, Monia R;March, Seth;Sainju, Rajat;Zhu, Chunxiang;Gao, Pu-Xian;Suib, Steven L;Zhu, Yuanyuan
- 通讯作者:Zhu, Yuanyuan
Quantitative gas-phase transmission electron microscopy: Where are we now and what comes next?
- DOI:10.1557/s43577-023-00648-8
- 发表时间:2024-02-05
- 期刊:
- 影响因子:5
- 作者:Jinschek,Joerg R.;Helveg,Stig;Crozier,Peter A.
- 通讯作者:Crozier,Peter A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanyuan Zhu其他文献
Relation between serum cystatin C level and brachial–ankle pulse wave velocity in Chinese general population
中国一般人群血清胱抑素C水平与臂踝脉搏波速度的关系
- DOI:
10.1080/10641963.2016.1248769 - 发表时间:
2018 - 期刊:
- 影响因子:12.3
- 作者:
Wei Yang;Shuyang Zhang;Shengyu Zhang;Yuanyuan Zhu - 通讯作者:
Yuanyuan Zhu
2.4 V Ultrahigh-Voltage Aqueous MXene-based Asymmetric Micro-Supercapacitors with High Volumetric Energy Density Toward a Self-Sufficient Integrated Microsystem
具有高体积能量密度的 2.4 V 超高电压水基 MXene 基不对称微型超级电容器,实现自给自足的集成微系统
- DOI:
10.1016/j.fmre.2022.03.021 - 发表时间:
2022-04 - 期刊:
- 影响因子:0
- 作者:
Yuanyuan Zhu;Shuanghao Zheng;Jieqiong Qin;Jiaxin Ma;Pratteek Das;Feng Zhou;Zhong-Shuai Wu - 通讯作者:
Zhong-Shuai Wu
Realization path and connotation of the Healthy China strategy: macroscopic perspective of dietary structure and the entry of individual health consciousness
健康中国战略的实现路径与内涵:宏观视角的膳食结构与个体健康意识的切入
- DOI:
10.1186/s12889-024-18557-z - 发表时间:
2024 - 期刊:
- 影响因子:4.5
- 作者:
Xiaohua Zhu;Yan Zhang;Yuanyuan Zhu;Youhua Guo;Yunjin Zhang;Bin Wen - 通讯作者:
Bin Wen
Bioinspired preparation of polydopamine microcapsule for multienzyme system construction
仿生制备聚多巴胺微胶囊用于多酶系统构建
- DOI:
10.1039/c0gc00432d - 发表时间:
2011-02 - 期刊:
- 影响因子:9.8
- 作者:
Lei Zhang;Yang Zheng;Jiafu Shi;Zhongyi Jiang;Yanjun Jiang;Shi Zhang Qiao;Jian Li;Rui Wang;Ruijie Meng;Yuanyuan Zhu - 通讯作者:
Yuanyuan Zhu
Single-Cell Analysis for Glycogen Localization and Metabolism in Cultured Astrocytes
培养星形胶质细胞中糖原定位和代谢的单细胞分析
- DOI:
10.1007/s10571-019-00775-4 - 发表时间:
2019-12 - 期刊:
- 影响因子:4
- 作者:
Yuanyuan Zhu;Ze Fan;Rui Wang;Rougang Xie;Haiyun Guo;Ming Zhang;Baolin Guo;Tangna Sun;Haifeng Zhang;Lixia Zhuo;Yan Li;Shengxi Wu - 通讯作者:
Shengxi Wu
Yuanyuan Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
典型热带生态系统大气零价汞源汇格局变化及机理解析
- 批准号:42377255
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SlCNR8调控番茄植株衰老的机理解析
- 批准号:32360766
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
考虑多层次社会网络的乡村居民活动-出行行为特征辨识及决策机理解析
- 批准号:72361015
- 批准年份:2023
- 资助金额:26 万元
- 项目类别:地区科学基金项目
腈水解酶的催化杂泛性机理解析及其在S-2,2-二甲基环丙烷甲酰胺合成中的应用
- 批准号:22308332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
典型喀斯特农田-次生林-原生林大气汞源汇格局演变过程与机理解析
- 批准号:42377246
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CAREER: Mechanistic understanding of the nanoscale interactions of structurally tunable 3D assemblies of MXenes-polyelectrolytes
职业:对 MXenes-聚电解质结构可调 3D 组件的纳米级相互作用的机理理解
- 批准号:
2238908 - 财政年份:2023
- 资助金额:
$ 59.67万 - 项目类别:
Standard Grant
Mechanistic Understanding of Hypoxia-Induced Peroxisome loss: Implications for Heart Failure
缺氧引起的过氧化物酶体损失的机制理解:对心力衰竭的影响
- 批准号:
10840053 - 财政年份:2023
- 资助金额:
$ 59.67万 - 项目类别:
Mechanistic Understanding of Hypoxia-Induced Peroxisome loss: Implications for Heart Failure
缺氧引起的过氧化物酶体损失的机制理解:对心力衰竭的影响
- 批准号:
10427935 - 财政年份:2022
- 资助金额:
$ 59.67万 - 项目类别:
Towards a mechanistic understanding of the role of gut microbiota in postnatal growth impairment
从机制上理解肠道微生物群在产后生长障碍中的作用
- 批准号:
10655393 - 财政年份:2022
- 资助金额:
$ 59.67万 - 项目类别:
Towards a mechanistic understanding of the role of gut microbiota in postnatal growth impairment
从机制上理解肠道微生物群在产后生长障碍中的作用
- 批准号:
10765586 - 财政年份:2022
- 资助金额:
$ 59.67万 - 项目类别: