CAREER: Atmospheric-Pressure Manufacturing of Nanocrystalline Diamonds by Plasma-Assisted Flat Flame Vapor Deposition

职业:通过等离子体辅助平面火焰气相沉积法常压制造纳米晶金刚石

基本信息

  • 批准号:
    2238235
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will support research that will establish new knowledge of an atmospheric-pressure manufacturing process for nanocrystalline diamonds with well-controlled thermal, electrical and optical functionalities. Nanocrystalline diamonds are a class of carbon nanomaterials possessing prominent properties for a wide range of energy, semiconductor, biomedical and quantum applications. However, the current state-of-the-art approaches to fabricating nanoscale diamonds rely on either very high-pressure or low-pressure processes and lack scalability and controllability. These deficiencies stem from a lack of fundamental knowledge in atmospheric-pressure process required for high throughput, scalable manufacturing. The new approach will provide an economically viable platform for continuous, large-scale manufacturing of high-quality nanocrystalline diamonds. The success of this research project can advance a variety of technologies that have strategic importance to the U.S. national welfare and defense, including thermal management, energy conversion and storage, nanoscale sensing, biomedical imaging, quantum computing. The education and outreach activities will contribute to broadening the participation in STEM education and strengthening the next-generation workforce for solving societal challenges, particularly in the field of advanced manufacturing.The flame vapor deposition methods have the capability to synthesize nanocrystalline diamonds at atmospheric pressure. In contrast to the low-pressure or high-pressure processes that are operated in a batch-by-batch manner with long downtime for loading and unloading samples, the atmospheric-pressure flame synthesis approach shows great promise for continuous production that is more efficient and cost-effective for up-scaling to large quantities and large areas. To advance the atmospheric-pressure manufacturing of nanocrystalline diamonds, the research work will investigate the coupling of flame vapor deposition and plasma, with the hypothesis of two synergistic effects that can be made by flame-plasma coupling: 1) improving the growth rate, uniformity and stability for scaling up, and 2) increasing the in-situ doping efficiency for controlling the functionality of nanocrystalline diamond. The project will take a combined experimental and modeling approach to advance the understanding of the controllability and scalability of plasma assisted flame vapor deposition process, study the in-situ doping capability, and develop a continuous, atmospheric prototype with in-line quality diagnosis for manufacturing functional nanocrystalline diamond materials and devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)资助将支持研究,这些研究将建立具有良好控制的热,电和光学功能的纳米晶金刚石大气压制造工艺的新知识。纳米金刚石是一类碳纳米材料,具有广泛的能源,半导体,生物医学和量子应用的突出特性。然而,目前最先进的制造纳米级金刚石的方法依赖于非常高压或低压的工艺,并且缺乏可扩展性和可控性。这些缺陷源于缺乏高产量、可扩展制造所需的大气压工艺的基本知识。新方法将为高质量纳米晶金刚石的连续大规模制造提供经济可行的平台。该研究项目的成功可以推进对美国国家福利和国防具有战略重要性的各种技术,包括热管理,能量转换和存储,纳米传感,生物医学成像,量子计算。教育和推广活动将有助于扩大STEM教育的参与,并加强下一代劳动力,以解决社会挑战,特别是在先进制造领域。火焰气相沉积方法有能力在大气压下合成纳米晶金刚石。与以逐批方式操作的低压或高压工艺相比,大气压火焰合成方法具有很长的装载和卸载样品的停机时间,对于连续生产来说,大气压火焰合成方法显示出很大的前景,对于扩大到大批量和大面积来说,这种方法更有效,更具成本效益。为了推进纳米金刚石的常压制备,本研究将研究火焰气相沉积和等离子体的耦合,假设火焰-等离子体耦合可以产生两种协同效应:1)提高生长速率,均匀性和稳定性以扩大规模,2)提高原位掺杂效率以控制纳米金刚石的功能。该项目将采取实验和建模相结合的方法,以推进对等离子体辅助火焰气相沉积工艺的可控性和可扩展性的理解,研究原位掺杂能力,并开发一种连续的,大气原型,该奖项反映了NSF的法定使命,并被认为是值得支持的,使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lili Cai其他文献

NEDD8-conjugating Enzyme UBC12 as a Novel Therapeutic Target in Esophageal Squamous Cell Carcinoma
NEDD8 结合酶 UBC12 作为食管鳞状细胞癌的新治疗靶点
  • DOI:
    10.1038/s41392-020-00226-3
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    39.3
  • 作者:
    Shiwen Wang;Jingrong Xian;Lihui Li;Yanyu Jiang;Yue Liu;Lili Cai;Robert M. Hoffman;Lijun Jia;Hu Zhao;Yanmei Zhang
  • 通讯作者:
    Yanmei Zhang
Oleanolic acid blocks the purine salvage pathway for cancer therapy by inactivating SOD1 and stimulating lysosomal proteolysis
  • DOI:
    10.1016/j.omto.2021.08.013.
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Dan Liu;Xing Jin;Guanzhen Yu;Mingsong Wang;Lei Liu;Wenjuan Zhang;Jia Wu;Fengying Wang;Jing Yang;Qin Luo;Lili Cai;Xi Yang;Xisong Ke;Yi Qu;Zhenye Xu;Lijun Jia;Wen-Lian Chen
  • 通讯作者:
    Wen-Lian Chen
Propane dehydrogenation performance of titanosilicate-1 supported CoOx catalysts by adjusting the acidity and reducibility
通过调节酸度和还原性研究钛硅酸盐-1负载CoOx催化剂的丙烷脱氢性能
  • DOI:
    10.1016/j.fuel.2024.132259
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Xue Cai;Yongzheng Zhao;Lili Cai;Xiaoyan Tian;Cunzi Wei;Dandan Qin;Meitong Li;Rui Tao;Wenling Chu;Weishen Yang
  • 通讯作者:
    Weishen Yang
Voriconazole in the treatment of pediatric patients with hematologic malignancies and invasive fungal infections: a real-world study

Lili Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lili Cai', 18)}}的其他基金

Fabrication of Antimicrobial Textiles by Roll-to-Roll Electroless Plating
卷对卷化学镀制备抗菌纺织品
  • 批准号:
    2114052
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Electron Irradiation of Graphene in Air at Atmospheric Pressure: a Method for Hydrogenating Graphene for Hydrogen Storage Applications
大气压下空气中石墨烯的电子辐照:一种用于储氢应用的石墨烯氢化方法
  • 批准号:
    2312436
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Elucidation of surface-launched plasma bullet generation mechanism and its application to large-volume atmospheric-pressure low-temperature plasma generation
地射等离子体弹产生机理的阐明及其在大体积常压低温等离子体产生中的应用
  • 批准号:
    23H01166
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the whole picture and heat transfer process of pool boiling phenomenon in liquid hydrogen from atmospheric to critical pressure
阐明液氢从常压到临界压力池沸腾现象的全貌及传热过程
  • 批准号:
    23H01349
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New insight into atmospheric seismology through the comparison of pressure and seismic data between the Earth and Mars
通过比较地球和火星之间的压力和地震数据,对大气地震学有了新的认识
  • 批准号:
    22KJ0745
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of near-ambient-pressure low energy inverse photoelectron spectroscopy and study on atmospheric and solvent effects on unoccupied states of n-type organic semiconductors.
近环境压力低能逆光电子能谱的发展以及大气和溶剂对n型有机半导体空位态影响的研究。
  • 批准号:
    23KJ0310
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: ECLIPSE: Exploring Non-Oxidative Reaction Pathways of Atmospheric Pressure Plasmas
合作研究:ECLIPSE:探索大气压等离子体的非氧化反应途径
  • 批准号:
    2308859
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: ECLIPSE: Exploring Non-Oxidative Reaction Pathways of Atmospheric Pressure Plasmas
合作研究:ECLIPSE:探索大气压等离子体的非氧化反应途径
  • 批准号:
    2308857
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Atmospheric pressure ion irradiation technique using ion-conductive glass and evaluation of ion irradiation and cell response
使用离子导电玻璃的大气压离子照射技术以及离子照射和细胞反应的评估
  • 批准号:
    23H01683
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the generation mechanism of homogeneous dielectric barrier discharge in atmospheric pressure air by surface charge density measurement
通过表面电荷密度测量阐明大气压空气中均匀介质阻挡放电的产生机制
  • 批准号:
    23K03824
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: ECLIPSE: Exploring Non-Oxidative Reaction Pathways of Atmospheric Pressure Plasmas
合作研究:ECLIPSE:探索大气压等离子体的非氧化反应途径
  • 批准号:
    2308858
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了