CAREER: Optimization in the Race to a Liquid Biopsy

职业生涯:液体活检竞赛中的优化

基本信息

  • 批准号:
    2238489
  • 负责人:
  • 金额:
    $ 54.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-15 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant will promote the progress of science and advance the national health and welfare by aiding in the development of accurate blood tests for early-stage cancer. Progress to date is due to advances in data collection technology (next-generation DNA sequencing, in particular), and in computational power for analyzing this new data. The critical task remaining is optimizing the design of liquid biopsies to carefully trade off between accuracy and cost. This award supports the development of algorithms designed for these optimization problems, and interdisciplinary work with medical researchers and practitioners to apply these algorithms. The accompanying plan for integrating research with education will aid in the dissemination of this work, and more broadly, interest in the intersection of mathematics and biology, to students, the academic medical community, and private companies.This research grant will study a new family of optimization problems that unifies (a) discrete optimization problems that occur in non-adaptive test design as it is conceived today, (b) online optimization problems supporting different forms of adaptive testing, and (c) the incorporation of important practical constraints unique to liquid biopsies. This family of problems subsumes or extends a number of classic problems including active sequential hypothesis testing, optimal decision trees, submodular function ranking, and decomposable submodular maximization, which are core problems in operations research, statistics, and computer science. The expected outcome of this work is a generic optimization approach with provable approximation guarantees and a linear runtime. Such an approach will be immediately applicable to the design of liquid biopsies, and will be validated with numerical experiments on publicly available data. More broadly, the researched work will contribute to the cross-fertilization of optimization and statistics, spanning active learning, approximation algorithms, and high-dimensional statistics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展计划(CAREER)拨款将通过帮助开发早期癌症的准确血液检测来促进科学进步并促进国民健康和福利。迄今为止的进展是由于数据收集技术(特别是下一代DNA测序)的进步,以及分析这些新数据的计算能力。剩下的关键任务是优化液体活检的设计,在准确性和成本之间进行仔细的权衡。该奖项支持为这些优化问题设计的算法的开发,以及与医学研究人员和从业人员应用这些算法的跨学科工作。将研究与教育相结合的附带计划将有助于传播这项工作,更广泛地说,对学生,学术医学界和私营公司的数学和生物学交叉的兴趣。这项研究资助将研究一个新的优化问题家族,该问题统一(a)今天设想的非自适应测试设计中出现的离散优化问题,(B)支持不同形式的自适应测试的在线优化问题,以及(c)结合液体活检特有的重要实际约束。这一系列问题包含或扩展了许多经典问题,包括主动序贯假设检验、最优决策树、子模块函数排序和可分解子模块最大化,这些问题是运筹学、统计学和计算机科学中的核心问题。这项工作的预期成果是一个通用的优化方法与可证明的近似保证和线性运行时间。这种方法将立即适用于液体活检的设计,并将通过公开数据的数值实验进行验证。更广泛地说,研究工作将有助于优化和统计的交叉施肥,跨越主动学习,近似算法和高维统计。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Li其他文献

Context effects on group-based employee selection decisions
背景对基于群体的员工选择决策的影响
Enter evaluation of mitral inflow velocity profile: optimal through plane location for mitral inflow assessment with cardiac magnetic resonance
输入二尖瓣流入速度曲线的评估:通过心脏磁共振评估二尖瓣流入的最佳平面位置
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Azarisman;Dennis T. L. Wong;J. Richardson;Andrew Li;Nelson Adam;M. Shirazi;J. Bradley;K. Teo;M. Worthley;S. Worthley
  • 通讯作者:
    S. Worthley
Angiotensin-(1-7) decreases cell growth and angiogenisis of human nasopharyngeal carcinoma xenografts.
  • DOI:
    10.1158/1535-7163.
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
  • 作者:
    Nana Pei;Renqiang Wan;Xinglu Chen;Andrew Li;Yanling Zhang;Jinlong Li;Hongyan Du;Baihong Chen;Wenjin Wei;Yanfei Qi;Yi Zhang;Michael J Katovich;Colin Sumners;Haifa Zheng;Hongwei Li
  • 通讯作者:
    Hongwei Li
CAPA-gene products in the haematophagous sandfly <em>Phlebotomus papatasi</em> (Scopoli) – vector for leishmaniasis disease
  • DOI:
    10.1016/j.peptides.2012.12.009
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reinhard Predel;Susanne Neupert;William K. Russell;Frank Hauser;David H. Russell;Andrew Li;Ronald J. Nachman
  • 通讯作者:
    Ronald J. Nachman
Esomeprazole Compared With Famotidine in the Prevention of Upper Gastrointestinal Bleeding in Patients With Acute Coronary Syndrome or Myocardial Infarction
埃索美拉唑与法莫替丁预防急性冠脉综合征或心肌梗死患者上消化道出血的比较
  • DOI:
    10.1038/ajg.2011.385
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Ng;Prabowo Tunggal;Wai;K. Lam;Andrew Li;Kit Chan;Y. Lau;C. Kng;Kin Kwan Keung;Ambrose Kwan;B. Wong
  • 通讯作者:
    B. Wong

Andrew Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Research Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Standard Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
  • 批准号:
    2340519
  • 财政年份:
    2024
  • 资助金额:
    $ 54.96万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了