CAREER: Towards Responsible Graph Neural Networks

职业:迈向负责任的图神经网络

基本信息

  • 批准号:
    2238616
  • 负责人:
  • 金额:
    $ 48.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Heralded as the breakthrough for machine learning on relational data (i.e., graphs) that would allow the same “AI renaissance” that Neural Networks have achieved in Computer Vision or Natural Language Processing, Graph Neural Networks (GNNs) have recently emerged as one of the preferred algorithms for reasoning on relational data. Yet, despite GNNs’ success on academic datasets, their properties remain ill-understood. This severely compromises their use in practical settings, where the requirements for rigor, transparency and reliability are paramount. In response, this proposal focuses on two key research agendas: (1) characterizing the properties, reliability and sensitivity of GNN outputs through experiments and theory; and (2) advancing the theoretical understanding of statistical properties in graph estimators, thereby providing a stronger foundation for the development of improved GNNs. The resulting algorithms will be deployed in diverse novel applications aimed at learning understandable and reliable representations from data. Efforts will be made to promote and spread the utilization of these methods through various means, including developing open-source software, creating new graduate courses, and supporting the investigator's university initiative to collaborate with local community colleges. The project investigates the relationship between data, GNN architecture parameters (such as embedding distance or convolution operator), and the resulting embedding space geometry. The overarching objective is to identify specific conditions under which different GNN architectures can achieve optimal performance. To this end, the investigator suggests leveraging insights from the rich statistics literature on high-dimensional statistics and graph-based regularization. This approach seeks to view GNNs as estimators for functions on a manifold in order to (a) analyze the types of functions that GNNs can effectively learn, and (b) draw comparisons and gain insights from high-dimensional models incorporating graph regularization. By pursuing these research directions, this proposal aims to transform GNNs from black-box models into actionable analysis pipelines that are explainable, trustworthy, and reliable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图神经网络(GNN)被誉为关系数据(即图形)机器学习的突破,它将允许神经网络在计算机视觉或自然语言处理中实现同样的“人工智能复兴”,最近已成为关系数据推理的首选算法之一。然而,尽管GNN在学术数据集上取得了成功,但人们对它们的性质仍然知之甚少。这严重影响了它们在实际环境中的使用,在实际环境中,对严谨、透明和可靠性的要求是至高无上的。为此,这项建议侧重于两个关键研究议程:(1)通过实验和理论确定国民总收入产出的性质、可靠性和敏感性;(2)推进对图形估计器统计性质的理论理解,从而为发展改进的国民总收入奠定更坚实的基础。由此产生的算法将被部署在各种新颖的应用中,旨在从数据中学习可理解和可靠的表示。将努力通过各种手段促进和推广这些方法的使用,包括开发开放源码软件,创建新的研究生课程,以及支持调查员大学与当地社区学院合作的倡议。该项目研究了数据、GNN体系结构参数(如嵌入距离或卷积运算符)和由此产生的嵌入空间几何之间的关系。总体目标是确定不同GNN架构能够实现最佳性能的具体条件。为此,研究人员建议利用丰富的统计文献中关于高维统计和基于图表的正则化的见解。这种方法试图将GNN视为流形上函数的估计器,以便(A)分析GNN可以有效学习的函数类型,以及(B)从包含图形正则化的高维模型中进行比较并获得洞察力。通过追求这些研究方向,该提案旨在将GNN从黑盒模型转变为可解释、值得信任和可靠的可操作分析管道。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claire Donnat其他文献

One-Bit Total Variation Denoising over Networks with Applications to Partially Observed Epidemics
网络上的一位总变异去噪及其在部分观测流行病中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Claire Donnat;Olga Klopp;Nicolas Verzelen
  • 通讯作者:
    Nicolas Verzelen
ICLR 2022 Challenge for Computational Geometry and Topology: Design and Results
ICLR 2022 计算几何和拓扑挑战赛:设计和结果
  • DOI:
    10.5281/zenodo.6554616
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adele Myers;Saiteja Utpala;S. Talbar;S. Sanborn;Christian Shewmake;Claire Donnat;Johan Mathe;Umberto Lupo;Rishi Sonthalia;Xinyue Cui;Tom Szwagier;Arthur Pignet;Andri Bergsson;Søren Hauberg;Dmitriy Nielsen;S. Sommer;David A. Klindt;Erik Hermansen;Melvin Vaupel;Benjamin A. Dunn;Jeffrey Xiong;N. Aharony;I. Pe’er;F. Ambellan;M. Hanik;Esfandiar Nava Yazdani;C. V. Tycowicz;Nina Miolane
  • 通讯作者:
    Nina Miolane
CS 224 N : Language Dynamics analysis through Word 2 Vec Embeddings
CS 224 N:通过 Word 2 Vec 嵌入进行语言动力学分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jeha Yang;Claire Donnat
  • 通讯作者:
    Claire Donnat

Claire Donnat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Towards Embedding Responsible AI in the School System: Co-Creation with Young People
将负责任的人工智能嵌入学校系统:与年轻人共同创造
  • 批准号:
    AH/Z505560/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Research Grant
NSF-CSIRO: Towards Interpretable and Responsible Graph Modeling for Dynamic Systems
NSF-CSIRO:迈向动态系统的可解释和负责任的图形建模
  • 批准号:
    2302786
  • 财政年份:
    2023
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Standard Grant
Responsible innovation of autonomous robots in agriculture: towards more substantive inclusion and user-centred design
农业自主机器人的负责任创新:迈向更实质性的包容性和以用户为中心的设计
  • 批准号:
    2603014
  • 财政年份:
    2021
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Studentship
Towards Environmentally Responsible Resource Extraction Network (NSERC-TERRE-NET)
迈向对环境负责的资源开采网络(NSERC-TERRE-NET)
  • 批准号:
    479708-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Strategic Network Grants Program
Towards Environmentally Responsible Resource Extraction Network (NSERC-TERRE-NET)
迈向对环境负责的资源开采网络(NSERC-TERRE-NET)
  • 批准号:
    479708-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Strategic Network Grants Program
Towards Environmentally Responsible Resource Extraction Network (NSERC-TERRE-NET)
迈向对环境负责的资源开采网络(NSERC-TERRE-NET)
  • 批准号:
    479708-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Strategic Network Grants Program
Robotics and the Law: Towards responsible and sustainable adoption of industrial collaborative embodied autonomous systems in the case of digital manu
机器人技术与法律:在数字化制造的情况下,以负责任和可持续的方式采用工业协作体现自主系统
  • 批准号:
    2678367
  • 财政年份:
    2018
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Studentship
Towards Environmentally Responsible Resource Extraction Network (NSERC-TERRE-NET)
迈向对环境负责的资源开采网络(NSERC-TERRE-NET)
  • 批准号:
    479708-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Strategic Network Grants Program
Endocrine Disrupting Chemicals: Towards Responsible Replacements
内分泌干​​扰化学品:迈向负责任的替代品
  • 批准号:
    360794
  • 财政年份:
    2016
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Operating Grants
Endocrine Disrupting Chemicals: Towards Responsible Replacements
内分泌干​​扰化学品:迈向负责任的替代品
  • 批准号:
    342542
  • 财政年份:
    2015
  • 资助金额:
    $ 48.48万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了