CAREER: Towards High-Channel-Count Invasive and High-Resolution Non-Invasive Electrical Neural Interfaces
职业:迈向高通道数侵入式和高分辨率非侵入式电神经接口
基本信息
- 批准号:2238833
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Neural interfaces serve as a powerful tool in neuroscience research to better understand the brain and are increasingly intended for clinical applications. For example, emerging brain-machine interfaces built on the large-scale neural recording can decipher brain activities; the decoded information can then be used to control neural prosthetics to restore lost sensory or motor functions for paralyzed patients. On the neural stimulation side, deep brain stimulation has proven to be highly effective in treating certain brain disorders by injecting a pulsed current with a pre-defined pattern. Although these results are highly encouraging, to fully unlock the potential of neural interfaces for future widespread and standard-of-care human clinical use, new device capabilities need to be developed with significantly improved hardware performance. For invasive neural interfaces, the biggest challenge now is to increase the number of simultaneous recording channels to enable control of more sophisticated prosthetics with higher degrees of freedom. For non-invasive neural interfaces, an emerging need is to develop new stimulation techniques that can replace today’s invasive deep brain stimulations to ensure long-term safety in brain disorder treatment. This project aims to address the above two pressing needs by developing a high-channel-count implanted neural interface and a non-invasive high-focality deep brain stimulation system. Through its coherent educational and outreach plan, this project will also train the next-generation workforce in hardware engineering by engaging graduate, undergraduate, and high-school students, especially those from underrepresented minority groups in STEM. There are two research thrusts in this project. The first thrust will develop a fully packaged implanted neural interface with higher channel counts of more than ten times of the state of the art. Additionally, the hardware will enable full spectrum coverage to record both local field potentials and action potentials with programmable stimulation capability. The complete hardware module will include a low-power application-specific integrated circuit (ASIC) that can record, stimulate, digitize, and stream out high-throughput neural signals, a flexible intracortical neural probe that will be flip-chip packaged with the ASIC, and a high-speed digital backend that relays the data from the ASIC to a computer for real-time data processing. The second thrust will develop a non-invasive deep brain stimulation system based on temporally interfering EM waves. The research tasks include multi-physics modeling, stimulation hardware implementation, and validation using phantom and animal model. Overall, this research will have the opportunity to impact the key designs in future brain-machine interfaces, neural prostheses, and the treatment of brain disorders.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
神经接口是神经科学研究中更好地了解大脑的强大工具,并且越来越多地用于临床应用。例如,建立在大规模神经记录基础上的新兴脑机接口可以破译大脑活动;解码后的信息可以用于控制神经假肢,以恢复瘫痪患者失去的感觉或运动功能。在神经刺激方面,深部脑刺激已被证明是非常有效的治疗某些大脑疾病,通过注入脉冲电流与预定义的模式。尽管这些结果非常令人鼓舞,但为了充分释放神经接口的潜力,以供未来广泛和标准的人类临床使用,需要开发具有显著改进的硬件性能的新设备功能。对于侵入式神经接口,现在最大的挑战是增加同步记录通道的数量,以实现对更复杂的假肢的控制,并具有更高的自由度。对于非侵入性神经接口,一个新兴的需求是开发新的刺激技术,可以取代今天的侵入性深部脑刺激,以确保大脑疾病治疗的长期安全性。本项目旨在通过开发高通道数植入式神经接口和无创高聚焦脑深部电刺激系统来解决上述两个迫切需求。通过其连贯的教育和推广计划,该项目还将通过吸引研究生,本科生和高中生,特别是那些来自STEM中代表性不足的少数群体的学生,来培训下一代硬件工程劳动力。在这个项目中有两个研究重点。第一个目标是开发一种完全封装的植入式神经接口,其通道数是最先进的十倍以上。此外,硬件将实现全频谱覆盖,以记录局部场电位和动作电位,并具有可编程刺激能力。完整的硬件模块将包括一个低功耗专用集成电路(ASIC),可以记录,刺激,识别和输出高通量神经信号,一个灵活的皮质内神经探针,将与ASIC倒装芯片封装,以及高速数字后端,将数据从ASIC中继到计算机进行实时数据处理。第二个目标是开发一种基于时间干扰电磁波的非侵入性脑深部刺激系统。研究任务包括多物理场建模,刺激硬件实现,以及使用体模和动物模型进行验证。总的来说,这项研究将有机会影响未来脑机接口,神经假体和脑疾病治疗的关键设计。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Complementary Pseudo-Resistor with Leakage Current Self-Compensation for Biopotential Amplifiers
- DOI:10.1109/biocas58349.2023.10389136
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Gerald Topalli;Chong Xie;Yingying Fan;Lan Luan;Rongkang Yin;Taiyun Chi
- 通讯作者:Gerald Topalli;Chong Xie;Yingying Fan;Lan Luan;Rongkang Yin;Taiyun Chi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taiyun Chi其他文献
Biophysics of amplitude-modulated giga-hertz electromagnetic waves stimulation
调幅千兆赫兹电磁波刺激的生物物理学
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Fatima Ahsan;A. C. Govindaraju;Robert M. Raphael;Taiyun Chi;Sameer A. Sheth;Wayne K. Goodman;B. Aazhang - 通讯作者:
B. Aazhang
Taiyun Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taiyun Chi', 18)}}的其他基金
FuSe-TG: Towards TeraCity in South Texas: Sub-TeraHertz City-scale Wireless Networks
FuSe-TG:迈向德克萨斯州南部的 TeraCity:亚太赫兹城市规模无线网络
- 批准号:
2235437 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
- 批准号:
2211803 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
ERI: Dynamic Wireless Channel Pad: A Lightweight and Effective Security Design Towards Non-cryptographic IoT Confidentiality
ERI:动态无线通道垫:面向非加密物联网机密性的轻量级且有效的安全设计
- 批准号:
2139028 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Towards a block-cipher circuit resistant to multiple side channel attacks
建立抵抗多重旁路攻击的分组密码电路
- 批准号:
DP180104188 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Towards a 'Big Data Browser' for standardised datasets in neuroscience, and its application in ion channel and single cell modelling.
面向神经科学标准化数据集的“大数据浏览器”及其在离子通道和单细胞建模中的应用。
- 批准号:
BB/N019512/1 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CAREER: A Pathway towards Channel Camouflage and Manipulation Techniques for Wireless Security
职业:无线安全信道伪装和操纵技术的途径
- 批准号:
1553304 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Synthetic and SAR Studies Directed Towards Novel Sodium Channel Blockers
针对新型钠通道阻滞剂的合成和 SAR 研究
- 批准号:
418793-2011 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Joint source-channel coding and decoding: Towards viable mobile video
联合源通道编码和解码:迈向可行的移动视频
- 批准号:
356807-2007 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Strategic Projects Supplemental Competition
Towards Neuromote: A Miniature, Impantable, Many-Channel, and Wireless Neural Recording, Processing, and Telemetry System
走向 Neuromote:微型、植入式、多通道、无线神经记录、处理和遥测系统
- 批准号:
0824275 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Towards understanding the role of sumoylation in ion channel regulation
理解苏酰化在离子通道调节中的作用
- 批准号:
7918744 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Towards understanding the role of sumoylation in ion channel regulation
理解苏酰化在离子通道调节中的作用
- 批准号:
7468506 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Towards understanding the role of sumoylation in ion channel regulation
理解苏酰化在离子通道调节中的作用
- 批准号:
7653711 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别: