CAREER: Probing and Understanding Nonreciprocal and Topological Radiative Heat Transport in Many-Body Magnetized Systems
职业:探索和理解多体磁化系统中的不可逆和拓扑辐射热传输
基本信息
- 批准号:2238927
- 负责人:
- 金额:$ 55.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Radiative heat transfer is everywhere, ranging from sunlight and incandescent lighting to thermal imaging. Controlling radiative heat transfer is critical for creating efficient solar energy harvesting, cooling, lighting, and imaging. However, experiments of radiative heat transfer have been limited to non-magnetic materials. Systems containing magnetized objects are expected to support many new effects of radiative heat transfer, with potential applications such as efficient heat exchange and energy conversion. To create these revolutionary technologies, it is essential to experimentally study and understand radiative heat transfer among at least three magnetized objects and to explore the use for improving heat exchange and energy conversion. Here, the Principal Investigator will develop a novel technique that will enable the study of radiative heat transfer among magnetized objects. The knowledge obtained in the proposed work points to applications such as thermal switches, energy harvesting, cooling, and magnetic sensing. The insights obtained in this work will make it possible to improve heat exchange for energy conversion, such as for harvesting sunlight, waste heat, and cooling. Educational and outreach activities include organizing "Thermal Emission for Energy with Nanoscience" workshops to train secondary precollege teachers for low-cost, hands-on activities that can be readily integrated into their classes. Micro-credentialing activities will be organized to introduce advances in radiative heat transfer to undergraduates. These multi-level educational and outreach activities increase involvement in science and engineering, promote STEM education and educator development, and motivate students to address critical global challenges.Radiative heat transport is essential for solar energy harvesting, radiative cooling, lighting, and imaging. However, experiments of radiative heat transport have been fundamentally limited by the time reversal symmetry. By breaking the time reversal symmetry, many-body magnetized systems (MBMS) consisting of at least three bodies made of magnetized semiconductors or magnetic quantum materials are expected to support vastly new phenomena of radiative heat transfer, with potentials for various technological applications. To create these revolutionary technologies, it is essential to probe and understand: 1) nonreciprocal radiative heat transport, 2) topological radiative heat transport, and 3) their use for improving heat exchange and energy conversion. A novel technique that will enable the study of radiative heat transport in MBMS will be developed in this project. Using this technique, for the first time, experiments will be conducted to probe nonreciprocal and topological radiative heat transport. Further, the use of MBMS for improving heat exchange and energy conversion will be explored. This program points to opportunities in the new research fields of nonreciprocal and topological thermal transport. The knowledge obtained in the proposed work points to applications such as dynamical control of heat flux, energy harvesting, refrigeration, and magnetic detection. The insights obtained in this work will make it possible to improve heat exchange for energy conversion, such as for harvesting sunlight, waste heat, and cooling. A multi-level educational and outreach plan includes: (1) organizing "Thermal Emission for Energy with Nanoscience" (TEEN) workshops to train secondary precollege teachers for low-cost, hands-on activities that can be easily integrated into their classes, in regions with a high percentage of prospective first-generation college students; (2) organizing micro-credentialing activities to introduce advances in nanoscale thermal radiation to undergraduates; (3) creating a new graduate course on nanoscale thermal radiation, which will be made available to the national and international community through the NSF-supported "nanohub", an online repository of courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
辐射传热无处不在,从阳光和白炽灯到热成像。控制辐射传热对于创造高效的太阳能收集、冷却、照明和成像至关重要。然而,辐射传热的实验仅限于非磁性材料。包含磁化物体的系统有望支持许多新的辐射传热效应,具有潜在的应用,如高效热交换和能量转换。为了创造这些革命性的技术,必须对至少三个磁化物体之间的辐射传热进行实验研究和理解,并探索改善热交换和能量转换的用途。在这里,首席研究员将开发一种新技术,使磁化物体之间的辐射传热研究成为可能。在提出的工作中获得的知识指向热开关,能量收集,冷却和磁传感等应用。在这项工作中获得的见解将使改善能量转换的热交换成为可能,例如收集阳光,废热和冷却。教育和推广活动包括组织“利用纳米科学的热能发射”讲习班,培训中学预科教师进行低成本的实践活动,这些活动可以很容易地融入他们的课堂。组织微认证活动,向大学生介绍辐射传热的最新进展。这些多层次的教育和推广活动增加了学生对科学和工程的参与,促进了STEM教育和教育工作者的发展,并激励学生应对重大的全球挑战。辐射热传输对太阳能收集、辐射冷却、照明和成像至关重要。然而,辐射热输运的实验从根本上受到时间反转对称性的限制。通过打破时间反转对称,由至少三个磁化半导体或磁性量子材料组成的多体磁化系统(MBMS)有望支持大量新的辐射传热现象,具有各种技术应用的潜力。为了创造这些革命性的技术,必须探索和理解:1)非互反辐射热传输,2)拓扑辐射热传输,以及3)它们在改善热交换和能量转换方面的应用。本项目将开发一种新的技术,用于研究MBMS中的辐射热传输。利用这种技术,将首次进行实验来探测非互反和拓扑辐射热输运。此外,还将探讨MBMS在改善热交换和能量转换方面的应用。该计划指出了非互反和拓扑热输运的新研究领域的机会。在提出的工作中获得的知识指向应用,如热流的动态控制,能量收集,制冷和磁检测。在这项工作中获得的见解将使改善能量转换的热交换成为可能,例如收集阳光,废热和冷却。一项多层次的教育和推广计划包括:(1)在第一代大学生比例较高的地区,组织“纳米科学的热能发射”(TEEN)讲习班,培训中学预科教师进行低成本的实践活动,这些活动可以很容易地融入他们的课堂;(2)组织微认证活动,向大学生介绍纳米热辐射研究进展;(3)开设一门关于纳米尺度热辐射的新研究生课程,该课程将通过nsf支持的在线课程库“nanohub”向国内和国际社会开放。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Broadband Nonreciprocal Thermal Emission
- DOI:10.1103/physrevapplied.19.014013
- 发表时间:2023-01
- 期刊:
- 影响因子:4.6
- 作者:Zhenong Zhang;Linxiao Zhu
- 通讯作者:Zhenong Zhang;Linxiao Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linxiao Zhu其他文献
Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space
- DOI:
https://doi.org/10.1016/j.joule.2018.10.009 - 发表时间:
2019 - 期刊:
- 影响因子:39.8
- 作者:
Zhen Chen;Linxiao Zhu;Wei Li;Shanhui Fan - 通讯作者:
Shanhui Fan
Ultrahigh contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles
纳米粒子之间近场电磁热传递的超高对比度和大带宽热整流
- DOI:
10.1117/12.2061262 - 发表时间:
2014 - 期刊:
- 影响因子:1.6
- 作者:
Linxiao Zhu;C. Otey;S. Fan - 通讯作者:
S. Fan
Temporal coupled mode theory for thermal emission from a single emitter
单个发射器热发射的时间耦合模式理论
- DOI:
10.1364/cleo_qels.2013.qth3b.3 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Linxiao Zhu;S. Sandhu;C. Otey;M. Sinclair;T. Luk;S. Fan - 通讯作者:
S. Fan
Linxiao Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Probing matter-antimatter asymmetry with the muon electric dipole moment
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
- 批准号:11805087
- 批准年份:2018
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Biotic controls on the residence time of soil carbon and nitrogen: new understanding from stable isotope probing and optimization modeling
对土壤碳和氮停留时间的生物控制:稳定同位素探测和优化模型的新认识
- 批准号:
RGPIN-2017-05391 - 财政年份:2022
- 资助金额:
$ 55.64万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
- 批准号:
2103842 - 财政年份:2021
- 资助金额:
$ 55.64万 - 项目类别:
Continuing Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
- 批准号:
2104036 - 财政年份:2021
- 资助金额:
$ 55.64万 - 项目类别:
Continuing Grant
Collaborative Research: Probing quasiparticle excitations in TMDC Moiré superlattices for revealing and understanding novel two-dimensional correlated phases
合作研究:探测 TMDC 莫尔超晶格中的准粒子激发,以揭示和理解新颖的二维相关相
- 批准号:
2103731 - 财政年份:2021
- 资助金额:
$ 55.64万 - 项目类别:
Continuing Grant
Biotic controls on the residence time of soil carbon and nitrogen: new understanding from stable isotope probing and optimization modeling
对土壤碳和氮停留时间的生物控制:稳定同位素探测和优化模型的新认识
- 批准号:
RGPIN-2017-05391 - 财政年份:2021
- 资助金额:
$ 55.64万 - 项目类别:
Discovery Grants Program - Individual
Probing microenvironmental immunobiology to support understanding of novel anti-cancer biotherapeutic interventions in MSS colorectal cancer
探索微环境免疫生物学以支持对 MSS 结直肠癌新型抗癌生物治疗干预措施的理解
- 批准号:
2435644 - 财政年份:2020
- 资助金额:
$ 55.64万 - 项目类别:
Studentship
Biotic controls on the residence time of soil carbon and nitrogen: new understanding from stable isotope probing and optimization modeling
对土壤碳和氮停留时间的生物控制:稳定同位素探测和优化模型的新认识
- 批准号:
RGPIN-2017-05391 - 财政年份:2020
- 资助金额:
$ 55.64万 - 项目类别:
Discovery Grants Program - Individual
Conference: GRC Bioelectronics: Probing, Manipulating and Understanding Cell-Materials Interfaces to Achieve Electrical Continuity; June 16-21, 2019; Andover, NH
会议:GRC生物电子学:探测、操纵和理解细胞材料界面以实现电气连续性;
- 批准号:
1912164 - 财政年份:2019
- 资助金额:
$ 55.64万 - 项目类别:
Standard Grant
Biotic controls on the residence time of soil carbon and nitrogen: new understanding from stable isotope probing and optimization modeling
对土壤碳和氮停留时间的生物控制:稳定同位素探测和优化模型的新认识
- 批准号:
RGPIN-2017-05391 - 财政年份:2019
- 资助金额:
$ 55.64万 - 项目类别:
Discovery Grants Program - Individual
Biotic controls on the residence time of soil carbon and nitrogen: new understanding from stable isotope probing and optimization modeling
对土壤碳和氮停留时间的生物控制:稳定同位素探测和优化模型的新认识
- 批准号:
RGPIN-2017-05391 - 财政年份:2018
- 资助金额:
$ 55.64万 - 项目类别:
Discovery Grants Program - Individual