CAREER: A portable nanosensor for ultrasensitive optical detection of airborne agents

职业:用于超灵敏光学检测空气中病原体的便携式纳米传感器

基本信息

  • 批准号:
    2238995
  • 负责人:
  • 金额:
    $ 50.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Ultrasensitive platforms that can be deployed in real-world situations to detect hundreds of molecules at once are central to environmental sustainability, forensic analysis, and human health. Current approaches to detect such molecules, known as volatile organic compounds (VOCs), are largely limited by technical capabilities, cost, and complexity. Optical techniques that utilize light to detect and untangle the complexity of VOC signals are promising but still under development. The platform developed in this CAREER project features novel nanomaterials that can be activated with light to selectively capture and detect airborne VOCs. This new detector has high adaptability to future portable or wearable designs and has the potential to accelerate the study of VOCs in new ways. The development of the proposed detector will lay a solid foundation for the design of new sensing platforms. This project will also provide tremendous learning opportunities for students from elementary to graduate school. Major activities include the development of community focused interactive scientific demos, production of K-12 educational boxes, development of an optical summer school for high school students, and the creation and dissemination of a wide array of accessible virtual optics resources, including interactive labs. The investigator’s long-term vision involves translating plasmonic nanomaterials to sensing applications directly in complex matrices, such as breath, biofluids, and real-world environmental sites. To realize this vision, this CAREER project seeks to develop sensitive, accurate sensors for passive detection of airborne volatile organic compounds (VOCs), including chemical warfare agents, toxic industrial chemicals, urban wildfire pollutants, and exhaled breath biomarkers. Common techniques to detect VOCs, including mass spectrometry, are bulky and difficult to integrate in portable or wearable devices for continuous monitoring. On the other hand, current portable devices to detect VOCs are largely based on electrochemical detection that greatly lack specificity, sensitivity, and ease. Multiplexed detection is rare, as specific systems need to be developed for each molecule of interest. To build an effective portable device for multiplexed VOC detection suitable for real-world deployment, two complementary technologies will be integrated: (1) a multiplexed array of metal organic frameworks (MOFs) tailored to differentially enrich target VOCs, embedded with (2) metal nanostructures that enable ultrasensitive label-free readout via the surface enhanced Raman scattering (SERS) phenomena. Multiplexed detection of VOCs will be used to build advanced data models by training on gas phase samples generated in the lab. This project will lay the groundwork towards developing a miniaturized passive SERS-MOF sensor that can be deployed in point-of-use applications like breath sensing or environmental monitoring, to be conveniently read out by inexpensive portable Raman spectrometers. This high-risk/high-reward approach is fundamentally different from competing approaches commonly employed in portable devices to monitor the concentration levels of a panel of VOCs and will accelerate their detection in real world settings with great impact on human health and safety.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可以在现实世界中部署以立即检测数百个分子的超敏平台对于环境可持续性,法医分析和人类健康至关重要。当前检测此类分子(称为挥发性有机化合物(VOC))的方法在很大程度上受到技术能力,成本和复杂性的限制。利用光来检测和解开VOC信号复杂性的光学技术是有希望的,但仍在开发中。在这个职业项目中开发的平台具有新颖的纳米材料,可以用光线激活,以选择性地捕获和检测空气中的VOC。该新探测器对未来的便携式或可穿戴设计具有很高的适应性,并且有可能以新的方式加速对VOC的研究。拟议的检测器的开发将为设计新灵敏度平台的设计奠定坚实的基础。该项目还将为从小学到研究生院的学生提供巨大的学习机会。主要活动包括开发以社区为中心的互动科学演示,生产K-12教育盒,为高中生的光学暑期学校开发以及创建和传播各种可访问的虚拟光学资源,包括互动实验室。研究者的长期视力涉及将血浆纳米材料转换为直接在复杂物质中的传感应用,例如呼吸,生物流体和现实世界环境地点。为了实现这一愿景,该职业项目旨在开发敏感,准确的传感器,用于被动检测空气稳态的有机化合物(VOC),包括化学战剂,有毒工业化学品,城市野火污染物以及杀死呼吸生物标志物。检测包括质谱在内的VOC的常见技术是笨重的,难以集成到便携式或可穿戴设备中进行连续监测。另一方面,当前可检测VOC的便携式设备主要基于电化学检测,极大地缺乏特异性,敏感性和易感性。多路复用检测很少见,因为需要为每个感兴趣的分子开发特定的系统。 To build an effective portable device for multiplexed VOC detection suitable for real-world deployment, two complete technologies will be integrated: (1) a multiplexed array of metal organic frameworks (MOFs) tailored to differently enrich target VOCs, embedded with (2) metal nanostructures that enable ultrasensitive label-free readout via the surface enhanced Raman scattering (SERS) phenomena.通过对实验室中生成的气相样本进行训练,对VOC的多路复用检测将用于构建高级数据模型。该项目将为开发微型的被动SERS-MOF传感器提供基础,该传感器可以在呼吸敏感性或环境监测等使用点应用中部署,可以通过便宜的便携式拉曼光谱仪方便地读取。这种高风险/高奖励方法与便携式设备中通常采用的竞争方法从根本上不同,以监视VOC小组的集中度水平,并将加速其在现实世界中的检测,并对人类健康和安全产生重大影响。该奖项反映了NSF的法定任务,并通过评估基金会的智力和广泛的态度来诚实地对其进行评估,并诚实地支持了基金会和广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Randy Carney其他文献

Randy Carney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

用于离子束原位分析的便携式加速器设计研究
  • 批准号:
    12311530054
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
多元能量采集与转化的便携式自供能电化学传感器检测抗生素抗性基因
  • 批准号:
    22304059
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于柔性集成三电极和智能手机的便携传感平台的构建及其靶向催化磺胺机制研究
  • 批准号:
    32360624
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
分级孔径MOF-核酸体系的精确调控及水生环境抗性基因便携式荧光传感器的构筑
  • 批准号:
    22376002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
用于骨质疏松无创快速筛查的便携式光电生化传感系统的研究
  • 批准号:
    62301567
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
  • 批准号:
    24K15389
  • 财政年份:
    2024
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AI-powered portable MRI abnormality detection (APPMAD)
人工智能驱动的便携式 MRI 异常检测 (APPMAD)
  • 批准号:
    MR/Z503812/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Research Grant
I-Corps: Translation Potential of Portable Tuned Mass Dampers to Reduce Vibration Serviceability Issues in Architectural Structures
I-Corps:便携式调谐质量阻尼器减少建筑结构振动适用性问题的转化潜力
  • 批准号:
    2407141
  • 财政年份:
    2024
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Standard Grant
I-Corps: Portable Preterm Imaging System
I-Corps:便携式早产儿成像系统
  • 批准号:
    2402620
  • 财政年份:
    2024
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Standard Grant
Multiple Representations of Learning in Dynamics and Control: Exploring the Synergy of Low-Cost Portable Lab Equipment, Virtual Labs, and AI within Student Learning Activities
动力学和控制中学习的多重表示:探索低成本便携式实验室设备、虚拟实验室和人工智能在学生学习活动中的协同作用
  • 批准号:
    2336998
  • 财政年份:
    2024
  • 资助金额:
    $ 50.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了