CAREER: Interfacial Engineering and Additive Printing of Flexible Thermoelectric Materials
职业:柔性热电材料的界面工程和增材印刷
基本信息
- 批准号:2238996
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant supports research focused on the independent control of electrical and thermal properties of thermoelectric composite films through interfacial engineering using additive-printing methods. The research aims to enable flexible thermoelectric devices that can harvest low-grade waste heat and generate a voltage output that can be used to charge sensor capacitors and batteries. These self-sufficient power supplies can eliminate the need for periodically charging health-monitoring devices and enable the uninterrupted monitoring of health parameters. These power supplies can also accelerate the adoption of continuous monitoring sensors used in wearable devices, buildings, structures, and defense. Existing additive manufacturing methods used for fabricating flexible thermoelectric devices involve long duration and high temperature curing cycles making them energy intensive. The state-of-the-art composite thermoelectric films, building blocks of thermoelectric devices, suffer from low performance due to the presence of insulating binder, poor interfacial connection between active particles, and interdependence of electron and phonon-transport properties. The scientific understanding of decoupling electron- and phonon-transport properties by modifying composite micro and nanostructures and interfaces using low-energy-input processing methods is necessary for improved thermoelectric performance. The availability of high-efficiency thermoelectric devices impacts the national priority of Clean Energy. The integrated research, education, and outreach components include expanding the mechanical engineering curriculum by introducing a course on flexible electronics, creating a new program to offer paid research opportunities to a diverse group of students, and developing a thermoelectric-generator kit for K-12 students.This research aims to decouple electron- and phonon-transport properties in thermoelectric composite films using low-energy-input stencil additive-printing methods which involve (1) the tuning of the distribution of thermoelectric particle (micro and nano) sizes, (2) creation of nanoscale binder interfaces, and (3) modification of composite micro and nanostructures using moderate curing and uniaxial pressure. Tuning the distribution of particle sizes establishes tradeoffs between micron sized particles, which provide a large mean free path for charge carriers, and nanosized particles and defects, which facilitate phonon scattering. The study of the nanoscale binder interfaces examines the interplay between how the binder amount affects electrical connection among active particles, facilitates thermal resistance, and influences the mechanical properties such as flexibility, adhesion, and strength of the film. The tuning of external uniaxial pressure develops a fundamental understanding of how applied pressure initiates defects and impacts thermoelectric properties. The research also demonstrates a proof-of-concept scalable flexible-thermoelectric generator (TEG) device, using the additive-printing method and roll-to-roll processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)资助支持研究重点是通过使用增材打印方法的界面工程独立控制热电复合材料薄膜的电气和热性能。该研究旨在使灵活的热电设备能够收集低品位的废热,并产生可用于为传感器电容器和电池充电的电压输出。这些自给自足的电源可以消除对健康监测设备定期充电的需要,并实现对健康参数的不间断监测。这些电源还可以加速可穿戴设备、建筑物、结构和国防中使用的连续监测传感器的采用。用于制造柔性热电装置的现有增材制造方法涉及长持续时间和高温固化循环,使得它们是能量密集型的。最先进的复合热电膜,热电器件的构建块,遭受低性能由于绝缘粘合剂的存在,活性颗粒之间的界面连接差,以及电子和声子传输特性的相互依赖性。通过使用低能量输入处理方法修改复合微结构和纳米结构以及界面来科学地理解去耦电子和声子传输特性对于改善热电性能是必要的。高效热电设备的可用性影响了国家清洁能源的优先事项。综合研究,教育和推广部分包括通过引入柔性电子课程来扩展机械工程课程,创建一个新的计划,为不同的学生群体提供有偿研究机会,并为K-12学生开发热电发电机套件。本研究旨在使用低能量输入模板添加剂解耦热电复合膜中的电子和声子传输特性,印刷方法,其包括(1)调整热电颗粒(微米和纳米)尺寸的分布,(2)产生纳米级粘合剂界面,和(3)使用适度固化和单轴压力对复合微米和纳米结构进行改性。调整颗粒尺寸的分布建立了微米尺寸颗粒与纳米尺寸颗粒和缺陷之间的折衷,微米尺寸颗粒为电荷载流子提供大的平均自由程,纳米尺寸颗粒和缺陷促进声子散射。纳米级粘合剂界面的研究检查了粘合剂量如何影响活性颗粒之间的电连接,促进热阻,并影响膜的柔韧性,粘附力和强度等机械性能之间的相互作用。外部单轴压力的调整发展了对施加压力如何引发缺陷和影响热电性能的基本理解。该研究还展示了一个概念验证的可扩展的柔性热电发电机(TEG)设备,使用增材打印方法和卷对卷处理。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deepa Madan其他文献
Deepa Madan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deepa Madan', 18)}}的其他基金
Flexible Thermoelectric Devices for Wearable Applications
适用于可穿戴应用的柔性热电器件
- 批准号:
2400221 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Engineering Tissue Level Targeting of Biologic Drugs via Automated Interfacial Microneedle Pumps
通过自动化界面微针泵工程化组织水平靶向生物药物
- 批准号:
10710767 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Interfacial engineering of multilayered metal organic framework membranes
多层金属有机骨架膜的界面工程
- 批准号:
DP230103192 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Transforming Nanocellulose Performance through Interfacial Engineering
通过界面工程改变纳米纤维素性能
- 批准号:
RGPIN-2017-05252 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Interfacial design and engineering for high-performance batteries
高性能电池的界面设计和工程
- 批准号:
FL210100050 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Australian Laureate Fellowships
Interfacial Engineering of Solution-Processed Thin-Film Photovoltaic Devices
溶液处理薄膜光伏器件的界面工程
- 批准号:
2610807 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Studentship
Transforming Nanocellulose Performance through Interfacial Engineering
通过界面工程改变纳米纤维素性能
- 批准号:
RGPIN-2017-05252 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Discovering Precipitation Pathways in Reactive Magnesium Oxide Cements via Nanoscale Interfacial Engineering for Durable Structural Composites
合作研究:通过耐用结构复合材料的纳米级界面工程发现活性氧化镁水泥中的沉淀途径
- 批准号:
2103056 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Engineering Interfacial Flows and Instabilities in Solidifying Liquids
职业:工程界面流动和凝固液体的不稳定性
- 批准号:
2042930 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: Interfacial Engineering for Stabilizing Hybrid Perovskites and Devices
合作研究:稳定混合钙钛矿和器件的界面工程
- 批准号:
2131610 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Enhancing CO2 Capture and Mineralization Using Interfacial Engineering
利用界面工程增强二氧化碳捕获和矿化
- 批准号:
567128-2021 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
University Undergraduate Student Research Awards