CAREER: Reading To Learn: Language-Guided Machine Learning

职业:从阅读中学习:语言引导的机器学习

基本信息

  • 批准号:
    2239363
  • 负责人:
  • 金额:
    $ 58.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-15 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

Humans have used language for centuries in order to communicate with each other and pass knowledge to successive generations. We learn through a combination of 'doing' things to receive feedback from the world (e.g. feeling pain when we put our finger in the fire) as well as 'reading' about how the world works (e.g. Wikipedia might say 'Fire has the potential to cause pain and physical damage through burning'). Modern artificial intelligence (AI) systems learn new skills predominantly through the former method, using a trial-and-error mechanism that requires comparing their own predictions against human-specified answers or judgements. While this approach has worked for automating a variety of tasks, it requires a large amount of data and computational resources, and is limited to task domains where trial-and-error learning is appropriate due to the low stakes involved. This project will develop techniques for a new paradigm of language-guided machine learning that will enable AI systems to acquire new knowledge and skills by reading relevant text in natural language such as books, manuals and webpages. This will result in robust AI models that require less human effort to train while allowing for better user personalization. Current approaches to efficient machine learning such as domain adaptation, few-shot learning, continual learning and reinforcement learning can only operate over task-specific symbolic or mathematical representations pre-specified by model developers (such as class IDs or hierarchies, dynamics models, reward functions) and do not leverage linguistic knowledge providing the same information. This CAREER project will develop models that can ‘read’ to acquire knowledge from textual sources and incorporate it into a better learning process for different paradigms. This includes supervised classification tasks as well as sequential decision-making where an agent executes several actions in an interactive environment. Models that can automatically acquire new knowledge and skills by reading text (from books, webpages, or human feedback) will require smaller amounts of traditional supervision, generalize better to unseen scenarios, and substantially reduce human effort in model development. The project will achieve this goal by tackling three key directions: (1) enabling language-guided supervised learning by developing a new framework for providing semantic class descriptions, (2) improving efficiency and generalization to new domains in reinforcement learning by leveraging offline textual guidance, and (3) enabling online adaptation of policies using linguistic feedback through human-machine collaboration. These thrusts will open new research directions for machine learning with language guidance and enable better real-world human-machine collaboration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几个世纪以来,人类使用语言是为了相互交流,并将知识传递给后代。我们通过"做“事情来接收来自世界的反馈(例如,当我们把手指放在火里时感到疼痛)以及”阅读"世界是如何运作的(例如,维基百科可能会说“火有可能通过燃烧引起疼痛和身体伤害”)。现代人工智能(AI)系统主要通过前一种方法学习新技能,使用试错机制,需要将自己的预测与人类指定的答案或判断进行比较。虽然这种方法已经用于自动化各种任务,但它需要大量的数据和计算资源,并且由于涉及的风险较低,因此仅限于适合试错学习的任务域。该项目将为语言引导的机器学习的新范式开发技术,使人工智能系统能够通过阅读自然语言中的相关文本(如书籍,手册和网页)来获得新的知识和技能。这将产生强大的AI模型,需要更少的人力来训练,同时允许更好的用户个性化。目前有效的机器学习方法,如域自适应,少次学习,持续学习和强化学习,只能在模型开发人员预先指定的特定于任务的符号或数学表示(如类ID或层次结构,动态模型,奖励函数)上操作,并且不能利用语言知识提供相同的信息。这个CAREER项目将开发可以“阅读”的模型,以从文本来源获取知识,并将其纳入不同范式的更好的学习过程。这包括监督分类任务以及顺序决策,其中代理在交互式环境中执行多个动作。可以通过阅读文本(从书籍、网页或人类反馈中)自动获取新知识和技能的模型将需要更少量的传统监督,更好地推广到看不见的场景,并大大减少模型开发中的人力。该项目将通过解决三个关键方向来实现这一目标:(1)通过开发一个提供语义类描述的新框架来实现语言指导的监督学习,(2)通过利用离线文本指导来提高强化学习中新领域的效率和泛化能力,以及(3)通过人机协作使用语言反馈来实现在线调整政策。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SemSup-XC: Semantic Supervision for Zero and Few-shot Extreme Classification
  • DOI:
    10.48550/arxiv.2301.11309
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pranjal Aggarwal;A. Deshpande;Karthik Narasimhan
  • 通讯作者:
    Pranjal Aggarwal;A. Deshpande;Karthik Narasimhan
C-STS: Conditional Semantic Textual Similarity
C-STS:条件语义文本相似度
  • DOI:
    10.18653/v1/2023.emnlp-main.345
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deshpande, Ameet;Jimenez, Carlos;Chen, Howard;Murahari, Vishvak;Graf, Victoria;Rajpurohit, Tanmay;Kalyan, Ashwin;Chen, Danqi;Narasimhan, Karthik
  • 通讯作者:
    Narasimhan, Karthik
Tree of Thoughts: Deliberate Problem Solving with Large Language Models
  • DOI:
    10.48550/arxiv.2305.10601
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shunyu Yao;Dian Yu;Jeffrey Zhao;Izhak Shafran;T. Griffiths;Yuan Cao;Karthik Narasimhan
  • 通讯作者:
    Shunyu Yao;Dian Yu;Jeffrey Zhao;Izhak Shafran;T. Griffiths;Yuan Cao;Karthik Narasimhan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karthik Narasimhan其他文献

Improving Dialog Systems for Negotiation with Personality Modeling
通过个性建模改进谈判对话系统
Can Rationalization Improve Robustness?
合理化可以提高稳健性吗?
Nonlinear dynamic modeling of the voiced excitation for improved speech synthesis
浊音激励的非线性动态建模以改进语音合成
Using Natural Language and Program Abstractions to Instill Human Inductive Biases in Machines
使用自然语言和程序抽象向机器灌输人类归纳偏差
  • DOI:
    10.48550/arxiv.2205.11558
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sreejan Kumar;Carlos G. Correa;Ishita Dasgupta;Raja Marjieh;Michael Y Hu;Robert D. Hawkins;N. Daw;Jonathan D. Cohen;Karthik Narasimhan;T. Griffiths
  • 通讯作者:
    T. Griffiths
Reading and Acting while Blindfolded: The Need for Semantics in Text Game Agents
蒙眼阅读和行动:文本游戏代理对语义的需求

Karthik Narasimhan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

精子发生中mRNA下游开放阅读框(downstream Open Reading Frame,dORF)的功能研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    $ 58.5万
  • 项目类别:
    Continuing Grant
I-Corps: Artificially Intelligent Dialogic Reading Aid
I-Corps:人工智能对话阅读辅助工具
  • 批准号:
    2349210
  • 财政年份:
    2024
  • 资助金额:
    $ 58.5万
  • 项目类别:
    Standard Grant
SBIR Phase II: Computer-based co-reading for students with reading disabilities
SBIR 第二阶段:为有阅读障碍的学生提供基于计算机的共同阅读
  • 批准号:
    2321439
  • 财政年份:
    2024
  • 资助金额:
    $ 58.5万
  • 项目类别:
    Cooperative Agreement
An Eye-Tracking Study: Exploring Integrated Reading Tasks in the New Format of the English Common Test for Japanese University Admissions
眼动追踪研究:探索日本大学入学英语通用考试新形式中的综合阅读任务
  • 批准号:
    24K04032
  • 财政年份:
    2024
  • 资助金额:
    $ 58.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
International Institutional Awards Tranche 2 Reading
国际机构奖第二期阅读
  • 批准号:
    BB/Z514615/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.5万
  • 项目类别:
    Research Grant
Readingに関する自律的英語学習メカニズムの解明
与阅读相关的英语自主学习机制阐释
  • 批准号:
    24K04152
  • 财政年份:
    2024
  • 资助金额:
    $ 58.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Digital building blocks of elementary school foreign language reading motivation
小学外语阅读动机的数字积木
  • 批准号:
    23K25344
  • 财政年份:
    2024
  • 资助金额:
    $ 58.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affective Computing Models: from Facial Expression to Mind-Reading
情感计算模型:从面部表情到读心术
  • 批准号:
    EP/Y03726X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.5万
  • 项目类别:
    Research Grant
University of Reading and Starlight Xpress Limited KTP 23_24 R1
雷丁大学和 Starlight Xpress Limited KTP 23_24 R1
  • 批准号:
    10070106
  • 财政年份:
    2024
  • 资助金额:
    $ 58.5万
  • 项目类别:
    Knowledge Transfer Partnership
International Institutional Awards Tranche 1 Reading
国际机构奖第一期阅读
  • 批准号:
    BB/Y514184/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了