CAREER: Context-Aware Task-Oriented Dexterous Robotic Manipulation
职业:上下文感知、任务导向的灵巧机器人操作
基本信息
- 批准号:2239540
- 负责人:
- 金额:$ 59.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the advancement of modern industries, effective manipulation of unfamiliar objects in an assortment of dimensions, shapes, or materials becomes the bottleneck problem in the automation of manufacturing, services, and retail trade. This Faculty Early Career Development (CAREER) project will build innovative technologies to enable a robot to manipulate unfamiliar objects for difficult tasks, e.g., goods packing, drilling, waste sorting, and small part assembly. The advantage of the technologies is the capability of manipulating an object in accordance with the task requirements and the perceived object properties including shapes and materials. This project has great potential to benefit numerous industries by improving productivity, deskilling robot programming, simplifying robot planning, and lowering the technical boundaries. This project will support the national strategy in bringing manufacturing back to the US while benefiting many industries and increasing their economic competitiveness. The project will establish a holistic framework of Context-Aware Task-Oriented Manipulation (CATOM) to address three cornerstone challenges in dexterous manipulation: object affordance perception, dexterity modeling, and manipulation planning and learning. An object affordance refers to actions that match with the physical properties of an object, such as shapes, mass, and friction. The object affordances are obtained from object characteristics measured by multimodal sensors. For this purpose, a knowledge-driven model will be designed, which fuses heterogenous sensing and incorporates human experience. The object affordances will be represented by potential contacts under each grasp taxonomy. A topology-based modeling method will be used to align potential hand postures with the contacts for a proper grasp. With the topology-based modeling, a complex task will be represented as a spatial-temporal sequence of hand topologies and operations. A hybrid learning and planning mechanism will be implemented to deploy hand topologies and perform actions under contextual constraints. The research of these perception, planning, and learning methodologies will advance the knowledge in dexterous robotic manipulation for complex tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着现代行业的发展,在各种尺寸,形状或材料中有效操纵不熟悉的物体成为制造,服务和零售贸易自动化的瓶颈问题。这个教师的早期职业发展(职业)项目将建立创新的技术,以使机器人能够操纵陌生的物体处理艰巨的任务,例如,货物包装,钻孔,废物分类和小部分组装。该技术的优点是能够根据任务要求以及包括形状和材料在内的感知对象属性来操纵对象。该项目具有通过提高生产力,机器人编程,简化机器人计划并降低技术界限的巨大潜力,可以使众多行业受益。该项目将支持国家战略将制造业带回美国,同时使许多行业受益并提高其经济竞争力。该项目将建立一个以情境感知任务为导向的操纵(CATOM)的整体框架,以解决灵巧操作中的三个基石挑战:对象负担能力感知,敏捷性建模以及操纵计划和学习。对象负担得起的是与对象的物理特性相匹配的动作,例如形状,质量和摩擦。对象提供的是从通过多模式传感器测量的对象特性获得的。为此,将设计一个知识驱动的模型,该模型融合了异质的传感并结合了人类的经验。对象负担将由每个GRASP分类学下的潜在联系来代表。基于拓扑的建模方法将用于使潜在的手部姿势与触点保持适当的掌握。通过基于拓扑的建模,复杂的任务将被表示为手动拓扑和操作的时空序列。将实施混合学习和计划机制,以部署手部拓扑并在上下文约束下执行操作。对这些感知,计划和学习方法的研究将推进灵巧的机器人操纵的知识,以实现复杂任务。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估标准来通过评估来支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Knowledge Augmentation and Task Planning in Large Language Models for Dexterous Grasping
- DOI:10.1109/humanoids57100.2023.10375176
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Hui Li;Dang M. Tran;Xinyu Zhang;Hongsheng He
- 通讯作者:Hui Li;Dang M. Tran;Xinyu Zhang;Hongsheng He
AI Planning from Natural-Language Instructions for Trustworthy Human-Robot Communication
根据自然语言指令进行人工智能规划,实现可信赖的人机通信
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tran, Dang;Li, Hui;He, Hongsheng
- 通讯作者:He, Hongsheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongsheng He其他文献
Face Recognition Using ALLE and SIFT for Human Robot Interaction
使用 ALLE 和 SIFT 进行人机交互的人脸识别
- DOI:
10.1007/978-3-642-03983-6_9 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Yaozhang Pan;S. Ge;Hongsheng He - 通讯作者:
Hongsheng He
用于生态系统仿真的数据合成方法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.3
- 作者:
Hongsheng He;Dali Wang;Yang Xu;Jindong Tan - 通讯作者:
Jindong Tan
Real-time face detection for human robot interaction
人机交互的实时人脸检测
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Yaozhang Pan;S. Ge;Hongsheng He;Lei Chen - 通讯作者:
Lei Chen
基于惯性辅助的光流的相对速度估计
- DOI:
- 发表时间:
- 期刊:
- 影响因子:3.5
- 作者:
Hongsheng He;Yan Li;Jindong Tan - 通讯作者:
Jindong Tan
Semantics Comprehension of Entities in Dictionary Corpora for Robot Scene Understanding
机器人场景理解词典语料库中实体的语义理解
- DOI:
10.1007/978-3-030-05204-1_35 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Fujian Yan;Yinlong Zhang;Hongsheng He - 通讯作者:
Hongsheng He
Hongsheng He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongsheng He', 18)}}的其他基金
RII Track-4: NSF: Enabling Synergistic Multi-Robot Cooperation for Mobile Manipulation Beyond Individual Robotic Capabilities
RII Track-4:NSF:实现协同多机器人合作,实现超越单个机器人能力的移动操作
- 批准号:
2327313 - 财政年份:2024
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
I-Corps: A Smart Context-Aware Multi-Fingered System for Dexterous Grasping
I-Corps:智能上下文感知多指系统,用于灵巧抓取
- 批准号:
2402466 - 财政年份:2023
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
CAREER: Context-Aware Task-Oriented Dexterous Robotic Manipulation
职业:上下文感知、任务导向的灵巧机器人操作
- 批准号:
2420355 - 财政年份:2023
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
FW-HTF-P: Human-Agent Teaming for the Future of Work in Aircraft Manufacturing
FW-HTF-P:飞机制造行业未来工作的人类代理团队
- 批准号:
2129113 - 财政年份:2022
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
I-Corps: A Smart Context-Aware Multi-Fingered System for Dexterous Grasping
I-Corps:智能上下文感知多指系统,用于灵巧抓取
- 批准号:
2211149 - 财政年份:2022
- 资助金额:
$ 59.96万 - 项目类别:
Standard Grant
相似国自然基金
融合符号推理与深度学习的复杂语境下实体关系抽取技术研究
- 批准号:62376033
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
复杂任务驱动下融合视听感知与态势语境的空管语音理解研究
- 批准号:62371323
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
交互语境影响蒙汉双语者注意控制的认知神经机制
- 批准号:32360200
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向高维生物数据的语境可视分析的研究
- 批准号:62302399
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向开放环境的软件语境分析与缺陷诊断技术研究
- 批准号:62302209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Context-Aware Task-Oriented Dexterous Robotic Manipulation
职业:上下文感知、任务导向的灵巧机器人操作
- 批准号:
2420355 - 财政年份:2023
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
CAREER: Context-Aware Visual Analytics Systems: Evolving the One-Size-Fits-All Approach to Design and Evaluation
职业:上下文感知视觉分析系统:发展通用的设计和评估方法
- 批准号:
2142977 - 财政年份:2022
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
CAREER: Context-Aware Runtime Safety Assurance in Medical Human-Cyber-Physical Systems
职业:医疗人体网络物理系统中的上下文感知运行时安全保证
- 批准号:
2146295 - 财政年份:2022
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
CAREER: Leveraging Context-Aware Sensing to Enhance QoE for Mobile Users: A Practical Framework Design
职业:利用上下文感知感知增强移动用户的体验质量:实用的框架设计
- 批准号:
1943509 - 财政年份:2020
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant
CAREER: Multi-Resolution Model and Context Aware Information Networking for Cooperative Vehicle Efficiency and Safety Systems
职业:用于协作车辆效率和安全系统的多分辨率模型和上下文感知信息网络
- 批准号:
1664968 - 财政年份:2016
- 资助金额:
$ 59.96万 - 项目类别:
Continuing Grant