CAREER: Developing Algorithms for Object-Adaptive Super-Resolution in Biomedical Imaging
职业:开发生物医学成像中对象自适应超分辨率算法
基本信息
- 批准号:2239810
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Advanced biomedical imaging technology has revolutionized diagnosis and treatment by providing structural and functional details. Spatial resolution of biomedical images, however, sometimes do not suffice for specific applications due to constraints of image acquisition time. Conventional software-based improvement bears high costs in computation and visualization, opening a niche to optimize the framework towards super-resolution at reasonable costs. It aligns with NSF’s mission to promote the process of computer science and to advance the national health. This project is to investigate novel algorithm development to adaptively improve digital resolution and minimize the cost of computation in super-resolution process. Technically, this method combines the effort of object detection and super-resolution to bring a generalizable tool to potentially benefit multiple biomedical imaging modalities, such as optical coherence tomography (OCT), histological microscopy, confocal images, MRI, ultrasound, etc. The educational emphasizes activities to broaden the participation of underrepresented groups in biomedical pursuits.This project aims to develop intelligent object-adaptive super-resolution algorithms to improve resolutions of biomedical images in a robust, efficient, and generalizable manner. This project will develop robust object detection neural network to identify regions to be super-resolved. A scale factor will be determined for adaptive super-resolution. This project will investigate on computationally efficient algorithms to super-resolve biomedical images to multiple scale factors during a complex-valued image reconstruction process. This project will also develop a transferrable framework such that the super-resolution technology developed in one image modality can be adapted into the super-resolution technology developed by a different imaging modality. The approaches will be validated using OCT data and the domain adaption will be validated by transferring from OCT domain to histopathological domain. The research outcome will also result in artificial intelligence-based educational materials and software to reduce the need of biomedical facilities that are conventionally required but not cost-effective to underrepresented groups. In addition, this project includes outreach activities to promote biomedical participation in regions with limited access to biomedical resources and a new model to mentor a diverse and inclusive team and create motivation to the next generation of researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
先进的生物医学成像技术通过提供结构和功能细节,彻底改变了诊断和治疗。然而,由于图像采集时间的限制,生物医学图像的空间分辨率有时不足以满足特定的应用。传统的基于软件的改进在计算和可视化方面成本很高,这为以合理的成本优化超分辨率框架开辟了一个利基市场。它符合NSF的使命,以促进计算机科学的进程和促进国民健康。本计画旨在探讨新的演算法发展,以自适应地提升数位解析度,并减少超解析处理的运算量。从技术上讲,这种方法结合了目标检测和超分辨率的努力,带来了一种可推广的工具,可能有利于多种生物医学成像模式,如光学相干断层扫描(OCT),组织学显微镜,共聚焦图像,MRI,超声,该项目旨在开发智能对象自适应超级计算机,分辨率算法,以稳健、高效和可推广的方式提高生物医学图像的分辨率。该项目将开发强大的目标检测神经网络,以识别待超分辨率的区域。将确定用于自适应超分辨率的比例因子。本计画将研究在复值影像重建过程中,将生物医学影像超解析至多重比例因子的高效率演算法。 该项目还将开发一个可转移的框架,以便在一种成像模式下开发的超分辨率技术可以适应不同成像模式开发的超分辨率技术。将使用OCT数据对这些方法进行验证,并将通过从OCT域转移到组织病理学域来验证域自适应。研究成果还将产生基于人工智能的教育材料和软件,以减少对传统上需要但对代表性不足的群体不具成本效益的生物医学设施的需求。此外,该项目还包括推广活动,以促进生物医学资源有限地区的生物医学参与,以及指导多元化和包容性团队并为下一代研究人员创造动力的新模式。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Gan其他文献
An Improved Heterogeneous Dynamic List Schedule Algorithm
一种改进的异构动态列表调度算法
- DOI:
10.1007/978-3-030-60245-1_11 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wei Hu;Yu Gan;Yuan Wen;Xiangyu Lv;Yonghao Wang;Xiao Zeng;Meikang Qiu - 通讯作者:
Meikang Qiu
High mobility cerium-doped indium oxide thin films prepared by reactive plasma deposition without oxygen
- DOI:
10.1016/j.vacuum.2022.111512 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Yanping Zhang;Yu Gan;Tian Gan;Lili Wu;Jingquan Zhang;Xia Hao;Dewei Zhao - 通讯作者:
Dewei Zhao
Activation of Sirt1 protects from single-walled carbon nanotubes-induced pulmonary fibrosis by inhibiting alveolar macrophage senescence
- DOI:
10.1016/j.ecoenv.2025.118629 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:6.100
- 作者:
Xiang Zhang;Wenrui Zhao;Xinxin Hu;Yalu Shen;Yu Gan;Jiayang Zou;Yunfei Zhou;Tingting Zhu;Tong Shen - 通讯作者:
Tong Shen
An orbital angular momentum multiplexing communication system at 28 GHz with an active uniform circular array
- DOI:
10.1631/fitee.2400376 - 发表时间:
2025-02-05 - 期刊:
- 影响因子:2.900
- 作者:
Yu Gan;Lin Liu;Jian Bai;Hongfu Meng - 通讯作者:
Hongfu Meng
Image analytic tools for tissue characterization using optical coherence tomography
- DOI:
10.7916/d8vm4hxt - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yu Gan - 通讯作者:
Yu Gan
Yu Gan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Gan', 18)}}的其他基金
CRII:SCH:A Generative Deep Learning (GDL) based Platform for Super-resolution, Virtual-Pathological Visualization of Coronary Images
CRII:SCH:基于生成深度学习(GDL)的平台,用于冠状动脉图像的超分辨率、虚拟病理可视化
- 批准号:
2222739 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CRII:SCH:A Generative Deep Learning (GDL) based Platform for Super-resolution, Virtual-Pathological Visualization of Coronary Images
CRII:SCH:基于生成深度学习(GDL)的平台,用于冠状动脉图像的超分辨率、虚拟病理可视化
- 批准号:
1948540 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似海外基金
Developing Algorithms for Identifying Gene Modules in Single-Cell RNA-Seq Using Signed Graphs
开发使用符号图识别单细胞 RNA-Seq 中基因模块的算法
- 批准号:
24K18100 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Developing Quantum Algorithms for High-Entropy Alloy Discovery
职业:开发用于高熵合金发现的量子算法
- 批准号:
2239216 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CAREER: Developing a unified theory of descriptive combinatorics and local algorithms
职业:发展描述性组合学和局部算法的统一理论
- 批准号:
2239187 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Developing computer vision algorithms for ferrous scrap and secondary materials grading using images and videos as input, incorporating them into digital passports for increasing UK usage of domestically generated scrap.
使用图像和视频作为输入,开发用于黑色金属废料和二次材料分级的计算机视觉算法,并将其纳入数字护照中,以增加英国对国内产生的废料的使用。
- 批准号:
10076415 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant for R&D
developing and validating advanced Bayesian optimization algorithms
开发和验证先进的贝叶斯优化算法
- 批准号:
2885563 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Studentship
Smart QI: Developing a scalable platform for integrating data-driven algorithms that drive quality improvement in pediatric sepsis care at health facilities in Uganda
Smart QI:开发一个可扩展的平台,用于集成数据驱动的算法,推动乌干达医疗机构儿科脓毒症护理质量的提高
- 批准号:
460680 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Miscellaneous Programs
Developing Efficient Numerical Algorithms Using Fast Bayesian Random Forests
使用快速贝叶斯随机森林开发高效的数值算法
- 批准号:
2748743 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Studentship
Developing Algorithms for Visualizing Directed Signed Graphs
开发有向有向图可视化算法
- 批准号:
574913-2022 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
University Undergraduate Student Research Awards
REU Site: Collaborative Research: Developing, Analyzing, and Evaluating Self-drive Algorithms Using Real Street Legal Electric Vehicles on Campus
REU 网站:合作研究:在校园内使用真实街道合法电动汽车来开发、分析和评估自动驾驶算法
- 批准号:
2150096 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
REU Site: Collaborative Research: Developing, Analyzing, and Evaluating Self-drive Algorithms Using Real Street Legal Electric Vehicles on Campus
REU 网站:合作研究:在校园内使用真实街道合法电动汽车来开发、分析和评估自动驾驶算法
- 批准号:
2150292 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant