CAREER: Artificial Intelligence for Polarimetric Radar Remote Sensing of Precipitation

职业:用于降水偏振雷达遥感的人工智能

基本信息

  • 批准号:
    2239880
  • 负责人:
  • 金额:
    $ 64.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Polarimetric Doppler radars have been the most important remote sensing instrument for observing clouds and precipitation, serving as cornerstones of the national severe weather monitoring and forecast infrastructure. However, state-of-the-art approaches have only been able to extract part of the precipitation information from the multi-dimensional polarimetric radar data. This research will open new horizons for radar remote sensing of precipitation through developing explainable artificial intelligence (AI) techniques which can extract the rich information from radar data to improve the understanding of complex precipitation processes and atmospheric dynamics in different precipitation environments. The AI methods developed from this project can potentially be applied to the nationwide operational weather radars and many research radars in the United States and worldwide, thus can advance weather, water, and climate science and service. In addition to the training of undergraduate and graduate students, the planned educational activities are spread across multiple high schools in Northern Colorado, with instruction and field trips aimed at introducing high school students to weather observations and AI applications and instilling a desire to pursue STEM careers. The integration of research and educational activities can foster the next generation of scientists who will be familiar with both AI and meteorology fields.To achieve the scientific goals, this project focuses on: 1) investigating physics-guided AI models for hydrometeor identification and precipitation microphysics retrievals from polarimetric radar observations; 2) designing a dense convolutional neural network framework that has high generalization capability for radar-based quantitative precipitation estimation; 3) developing an interpretable AI model for precipitation nowcasting and investigating the controlling factors on storm initiation, growth and decay, which are poorly understood. This research will be accomplished through field data collection, model- and data-centric deep learning, and interpretation of the deep learning results. This research will enhance the ability to estimate and predict severe storms, which will lead to improved situational awareness of extreme weather events, improved decision making, and better public safety.This project is co-funded by the Directorate for Geosciences to support AI/ML advancement in the geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
极化多普勒雷达是观测云和降水最重要的遥感仪器,是国家灾害性天气监测预报基础设施的基石。然而,最先进的方法只能从多维极化雷达数据中提取部分降水信息。本研究将通过开发可解释的人工智能(AI)技术,从雷达数据中提取丰富的信息,提高对不同降水环境下复杂降水过程和大气动力学的理解,为雷达遥感降水开辟新的视野。该项目开发的人工智能方法可以潜在地应用于美国和世界各地的全国性业务气象雷达和许多研究雷达,从而可以推进天气、水和气候科学和服务。除了对本科生和研究生的培训外,计划中的教育活动还分布在科罗拉多州北部的多所高中,通过指导和实地考察,旨在向高中生介绍天气观测和人工智能应用,并灌输追求STEM职业的愿望。研究和教育活动的结合可以培养熟悉人工智能和气象领域的下一代科学家。为实现科学目标,本项目重点研究:1)研究基于物理导向的人工智能模型,用于极化雷达观测水文气象识别和降水微物理反演;2)设计了一种具有高泛化能力的稠密卷积神经网络框架,用于基于雷达的降水定量估计;3)建立可解释的降水近预报人工智能模型,研究目前尚不清楚的风暴发生、生长和衰减的控制因素。本研究将通过现场数据收集、以模型和数据为中心的深度学习以及对深度学习结果的解释来完成。这项研究将提高估计和预测强风暴的能力,从而提高对极端天气事件的态势感知,改进决策,改善公共安全。该项目由地球科学理事会共同资助,旨在支持人工智能/机器学习在地球科学领域的发展。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haonan Chen其他文献

Deployment and Performance of an X-Band Dual-Polarization Radar during the Southern China Monsoon Rainfall Experiment
X波段双偏振雷达在华南季风降雨实验中的部署和性能
  • DOI:
    10.3390/atmos9010004
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zhao shi;Haonan Chen;V.Ch;rasekar;Jianxin He
  • 通讯作者:
    Jianxin He
Improving Explainability of Deep Learning for Polarimetric Radar Rainfall Estimation
提高偏振雷达降雨估计深度学习的可解释性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Wenyuan Li;Haonan Chen;Lei Han
  • 通讯作者:
    Lei Han
Observations from the NOAA P-3 aircraft during ATOMIC
ATOMIC 期间 NOAA P-3 飞机的观测
  • DOI:
    10.5194/essd-13-3281-2021
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    R. Pincus;C. Fairall;A. Bailey;Haonan Chen;P. Chuang;G. de Boer;G. Feingold;D. Henze;Quinn T. Kalen;J. Kazil;Mason D. Leandro;Ashley Lundry;K. Moran;Dana A. Naeher;D. Noone;Akshar J. Patel;S. Pezoa;I. Popstefanija;E. Thompson;James G. Warnecke;P. Zuidema
  • 通讯作者:
    P. Zuidema
Study of martian dust aerosol with mars science laboratory rover engineering cameras.
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haonan Chen
  • 通讯作者:
    Haonan Chen
Research and Analysis of Electronic Commerce in Network Platforms with Mathematical Model and Cloud Computing
网络平台电子商务数学模型与云计算研究与分析
  • DOI:
    10.1088/1742-6596/1952/4/042116
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Han;Renhao Gao;Jia Li;Haonan Chen
  • 通讯作者:
    Haonan Chen

Haonan Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: How Collaboration and Competition Influence Research in the Emerging Field of Artificial Intelligence
职业:合作和竞争如何影响人工智能新兴领域的研究
  • 批准号:
    2337564
  • 财政年份:
    2024
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Continuing Grant
CAREER: An Artificial Intelligence (AI)-enabled Analytics Perspective for Developing Proactive Cyber Threat Intelligence
职业:基于人工智能 (AI) 的分析视角,用于开发主动网络威胁情报
  • 批准号:
    2338479
  • 财政年份:
    2024
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Continuing Grant
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Continuing Grant
CAREER: Harnessing Heterogeneous Sources of Data and Artificial Intelligence for Informed Flood Management
职业:利用异构数据源和人工智能进行明智的洪水管理
  • 批准号:
    2238639
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Standard Grant
CAREER: Rethinking PIM-Assisted GPU Computing for Multi-Tenant Artificial Intelligence
职业:重新思考用于多租户人工智能的 PIM 辅助 GPU 计算
  • 批准号:
    2239638
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Continuing Grant
CAREER: Achieving Explainable Artificial Intelligence (AI) through Human-AI Interaction
职业:通过人机交互实现可解释的人工智能 (AI)
  • 批准号:
    2237562
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Standard Grant
CAREER: Emotion Artificial Intelligence in the Future of Work: A Privacy and Relational Ethics Lens
职业:未来工作中的情感人工智能:隐私和关系伦理视角
  • 批准号:
    2236674
  • 财政年份:
    2023
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Continuing Grant
CAREER: DURAIS : A Platform for Co-Designing and Understanding the Roles of Conversational Artificial Intelligence Systems on Caregiving
职业:DURAIS:共同设计和理解对话式人工智能系统在护理方面的作用的平台
  • 批准号:
    2144880
  • 财政年份:
    2022
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Continuing Grant
STTR Phase I: Exploring Artificial Intelligence (AI)-Enabled Skills Data For Education-to-Employment Transitions and Career Support
STTR 第一阶段:探索人工智能 (AI) 支持的技能数据,以实现从教育到就业的过渡和职业支持
  • 批准号:
    2112276
  • 财政年份:
    2022
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Standard Grant
Collaborative Research: AI4GA - Developing Artificial Intelligence Competencies, Career Awareness, and Interest in Georgia Middle School Teachers and Students
合作研究:AI4GA - 培养佐治亚州中学教师和学生的人工智能能力、职业意识和兴趣
  • 批准号:
    2049029
  • 财政年份:
    2021
  • 资助金额:
    $ 64.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了