CAREER: Modular Protein Origami to Build Genetically Programmable Biomaterials
职业:用模块化蛋白质折纸构建基因可编程生物材料
基本信息
- 批准号:2239927
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYNature builds biological materials at the scale of nanometers that perform essential functions for life. Like the paper-folding artwork known as origami, biological molecules such as proteins fold and assemble into small-scale materials in various shapes. The evolution of life for billions of years has developed this sophisticated method to build remarkably precise and tiny materials in every living system. However, understanding nature’s way and exploiting it to build artificial materials that can program various biological functionalities is not yet close to realization. This project aims to understand how a class of short, modular helical protein tools, called coiled-coils, fold and interact with each other and make molecular origami using the protein tools to create nanometer-scale biomaterials. The principal investigator integrates research and education efforts to study the interactions between the coiled-coil proteins and their folding into origami shapes. Protein origami can be used to develop biomaterials with programmable complex functionalities, which can enable unprecedented technologies to solve problems in biology and medicine and contribute to the advancement in biomanufacturing and healthcare. Genetic manipulations of microorganisms are utilized to generate protein origami materials, followed by revealing their shapes and functions using biophysical characterization and computational tools. Education modules and outreach activities, in partnership with university workshops, are created to generate interest in protein materials and engage students of all levels, with a focus on how to design and make protein origami. Research integration activities provide lab experiences to assist the training of undergraduate and graduate students, including women in engineering and historically underrepresented students.PART 2: TECHNICAL SUMMARYThis project aims to understand the programmable protein assembly in complex systems, termed modular protein origami, and to build a robust framework for the design of biological nanomaterials with customizable sizes, shapes, and genetically programmable functionalities. Coiled-coil protein motifs that serve as versatile and modular toolkits with specific, controllable, and orthogonal protein-protein interactions are used to create well-defined protein origami nanostructures that perform biological functions. The principal investigator integrates research and education efforts to gain a comprehensive understanding of (i) the interaction modularity of coiled-coil proteins arranged in complex origami topologies, (ii) how the protein origami is controlled and used to program functionalities in cells, and (iii) genetic programmability of microbial assembly through modular protein origami on cell surfaces. To accomplish the objectives, experimental techniques for recombinant protein synthesis as well as protein characterization tools such as small-angle scattering and fluorescent microscopy are utilized in combination with computational structure modeling techniques. The outcome fills the critical knowledge gap in designing biofunctional protein nanomaterials using the coiled-coil protein motifs for technology development in fields ranging from synthetic biology to medicine. The education modules and outreach activities offer students in chemical engineering exposure to the basics of protein material design and engineering as well as techniques for protein synthesis, modeling, and characterization. The activities engage underrepresented engineering students and K-12 students in the neighboring community with a focus on hands-on experiences in protein origami design and fabrication.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术性总结自然界在纳米尺度上构建生物材料,这些材料执行生命的基本功能。就像折纸艺术一样,蛋白质等生物分子折叠并组装成各种形状的小尺寸材料。数十亿年的生命进化已经发展出这种复杂的方法,在每个生命系统中构建出非常精确和微小的材料。然而,理解自然的方式并利用它来构建可以编程各种生物功能的人工材料还没有接近实现。该项目旨在了解一类短的模块化螺旋蛋白质工具(称为卷曲螺旋)如何折叠并相互作用,并使用蛋白质工具制作分子折纸以创建纳米级生物材料。主要研究者整合了研究和教育工作,研究卷曲螺旋蛋白质之间的相互作用及其折叠成折纸形状。蛋白质折纸可用于开发具有可编程复杂功能的生物材料,这可以使前所未有的技术解决生物学和医学问题,并有助于生物制造和医疗保健的进步。利用微生物的遗传操作来产生蛋白质折纸材料,然后使用生物物理表征和计算工具来揭示它们的形状和功能。与大学研讨会合作,创建了教育模块和外联活动,以激发对蛋白质材料的兴趣,并吸引各级学生,重点是如何设计和制作蛋白质折纸。研究整合活动提供实验室经验,以协助培训本科生和研究生,包括工程领域的妇女和历来代表性不足的学生。该项目旨在了解复杂系统中的可编程蛋白质组装,称为模块化蛋白质折纸,并建立一个强大的框架,用于设计具有可定制尺寸,形状,和遗传可编程功能。卷曲螺旋蛋白质基序,作为通用的和模块化的工具包,具有特定的,可控的,和正交的蛋白质-蛋白质相互作用,用于创建定义明确的蛋白质折纸纳米结构,执行生物功能。主要研究者整合了研究和教育工作,以全面了解(i)排列在复杂折纸拓扑结构中的卷曲螺旋蛋白质的相互作用模块化,(ii)蛋白质折纸如何控制并用于细胞中的功能编程,以及(iii)通过细胞表面上的模块化蛋白质折纸进行微生物组装的遗传可编程性。为了实现这些目标,重组蛋白合成的实验技术以及蛋白质表征工具,如小角度散射和荧光显微镜结合使用计算结构建模技术。这一成果填补了利用卷曲螺旋蛋白质基序设计生物功能蛋白质纳米材料的关键知识空白,用于从合成生物学到医学等领域的技术开发。教育模块和外展活动为化学工程专业的学生提供蛋白质材料设计和工程的基础知识,以及蛋白质合成,建模和表征的技术。该活动吸引了邻近社区中代表性不足的工程专业学生和K-12学生,重点是蛋白质折纸设计和制造的实践经验。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Won Min Park其他文献
Facile Functionalization of Colloidal Gold Nanorods by the Specific Binding of an Engineered Protein that Is Preferred over CTAB Bilayers
通过工程蛋白质的特异性结合(优于 CTAB 双层)轻松实现胶体金纳米棒的功能化
- DOI:
10.1002/cplu.201200239 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Won Min Park;B. Choi;Y. Huh;W. Hong;S. Y. Lee;T. Park - 通讯作者:
T. Park
Won Min Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Modular积图和最大团的草图形状匹配技术研究
- 批准号:61305091
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Design and evolution of deimmunized protein superglues to enhance modular cell therapy
去免疫蛋白强力胶的设计和进化以增强模块化细胞疗法
- 批准号:
MR/Y011910/1 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Development of Modular Synthetic Sensors for Protein Biomarker Detection
用于蛋白质生物标志物检测的模块化合成传感器的开发
- 批准号:
10659642 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
360 farm: First end-to-end modular insect farm for a sustainable protein source on commercial farms
360 farm:第一个端到端模块化昆虫农场,为商业农场提供可持续的蛋白质来源
- 批准号:
10051218 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Collaborative R&D
Novel Acylborons and Alpha-hydroxy Borons to Enable Modular, Regio- and Stereocontrolled Synthesis of Bioactive Molecules and Protein Conjugates
新型酰基硼和α-羟基硼能够实现生物活性分子和蛋白质缀合物的模块化、区域和立体控制合成
- 批准号:
10277045 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Dissecting modular interaction of RNA with protein in chromatin
解析染色质中 RNA 与蛋白质的模块化相互作用
- 批准号:
10450956 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Novel Acylborons and Alpha-hydroxy Borons to Enable Modular, Regio- and Stereocontrolled Synthesis of Bioactive Molecules and Protein Conjugates
新型酰基硼和α-羟基硼能够实现生物活性分子和蛋白质缀合物的模块化、区域和立体控制合成
- 批准号:
10452627 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Novel Acylborons and Alpha-hydroxy Borons to Enable Modular, Regio- and Stereocontrolled Synthesis of Bioactive Molecules and Protein Conjugates
新型酰基硼和α-羟基硼能够实现生物活性分子和蛋白质缀合物的模块化、区域和立体控制合成
- 批准号:
10668428 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Dissecting modular interaction of RNA with protein in chromatin
解析染色质中 RNA 与蛋白质的模块化相互作用
- 批准号:
10471444 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别: