CAREER: Ultracold Molecules Assembled in a Tweezer Array for Quantum Simulation

职业:将超冷分子组装在镊子阵列中进行量子模拟

基本信息

  • 批准号:
    2239961
  • 负责人:
  • 金额:
    $ 82.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

General audience abstract:The behavior of atoms and molecules is governed by quantum mechanics, but solving for the behavior of systems with many interacting particles is notoriously difficult even on the most powerful supercomputers. Scientists aim to learn about quantum systems by building a simulator that consists of many quantum particles with controlled interactions, but at a length and time scale amenable to observation and manipulation in the lab. The PI and his team will build a quantum simulator from an array of laser-trapped and cooled ultracold molecules. In contrast to atom-based simulators, the molecules introduce new types of interactions, for example, the long-range and anisotropic interaction from molecular dipole moments. The development of this novel simulation platform will potentially lead to the design of advanced, strongly interacting materials in energy transport, light harvesting, and quantum information science. It will provide invaluable insights into the fundamental properties of a wide range of correlated quantum systems, including black holes and nuclei. The PI will train an interdisciplinary team of students, as well as work to increase diversity and inclusion in quantum science. The PI will also design a curriculum for chemists that integrates quantum sciences, thus helping train the next generation's quantum workforce. Technical audience abstract:The platform is based on a tweezer array of ultracold LiCs molecules, where the interactions between rotational states are mediated by the electric dipole moment and tuned using static and microwave fields. The long-range interaction and long rotational coherence times will be used to simulate an extended Hubbard model and generalized quantum spin model, leading to the observation of new topological, exotic superfluid, and supersolid phases. Several challenges remain before laser-assembled ultracold molecules become a robust simulation platform. First, the Stark shift from the trapping light leads to measured rotational coherence times orders of magnitude shorter than the theoretical limit, which should be minimized when the molecule is in the tweezer ground state. Second, laser-assembled molecules are currently detected through reverse-assembly back into atoms, and the PI will develop a non-destructive direct molecule imaging scheme based on either a forbidden cycling transition in LiCs or on Rydberg-molecule interactions. Finally, single molecule assembly efficiency is limited by two atom motional excitations in the tweezer, and the PI will develop new more robust tweezer ground state preparation methods beyond Raman sideband cooling. Together, these breakthroughs will result in record-level interaction fidelity, and the simulation of new classes of strongly interacting systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
原子和分子的行为由量子力学控制,但即使在最强大的超级计算机上,解决具有许多相互作用粒子的系统的行为也是非常困难的。科学家们的目标是通过构建一个模拟器来了解量子系统,该模拟器由许多具有受控相互作用的量子粒子组成,但其长度和时间尺度适合在实验室中观察和操纵。PI和他的团队将从激光捕获和冷却的超冷分子阵列中构建量子模拟器。与基于原子的模拟器相比,分子引入了新类型的相互作用,例如,来自分子偶极矩的长程和各向异性相互作用。这种新型模拟平台的开发将可能导致在能量传输,光捕获和量子信息科学中设计先进的强相互作用材料。它将为包括黑洞和原子核在内的各种相关量子系统的基本特性提供宝贵的见解。PI将培养一个跨学科的学生团队,并致力于增加量子科学的多样性和包容性。PI还将为化学家设计一个整合量子科学的课程,从而帮助培养下一代的量子劳动力。技术观众摘要:该平台基于超冷LiCs分子的镊子阵列,其中旋转状态之间的相互作用由电偶极矩介导,并使用静态和微波场进行调谐。长程相互作用和长的旋转相干时间将被用来模拟扩展的哈伯德模型和广义量子自旋模型,从而观察到新的拓扑,奇异的超流体和超固相。在激光组装的超冷分子成为一个强大的模拟平台之前,仍然存在一些挑战。首先,从捕获光的斯塔克位移导致测量的旋转相干时间的数量级短于理论极限,这应该是最小化时,分子是在镊子基态。 其次,激光组装的分子目前是通过反向组装回原子来检测的,PI将开发一种基于LiCs中禁止循环跃迁或Rydberg分子相互作用的非破坏性直接分子成像方案。最后,单分子组装效率受到镊子中两个原子运动激发的限制,PI将开发新的更强大的镊子基态制备方法,超越拉曼边带冷却。 这些突破将共同带来创纪录的交互保真度,并模拟新类别的强交互系统。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Hood其他文献

Changes in Oriented Strandboard Permeability During Hot-Pressing
热压过程中定向刨花板渗透性的变化
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Hood
  • 通讯作者:
    Jonathan Hood

Jonathan Hood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Ultracold EEDM - Measuring The Electron's Electric Dipole Moment Using Ultracold Molecules
超冷 EEDM - 使用超冷分子测量电子的电偶极矩
  • 批准号:
    EP/X030180/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.88万
  • 项目类别:
    Research Grant
Testing fundamental physics with ultracold molecules
用超冷分子测试基础物理
  • 批准号:
    2892764
  • 财政年份:
    2023
  • 资助金额:
    $ 82.88万
  • 项目类别:
    Studentship
Nuclear T-violation searches using ultracold atoms and molecules
使用超冷原子和分子进行核 T 违规搜索
  • 批准号:
    RGPAS-2021-00001
  • 财政年份:
    2022
  • 资助金额:
    $ 82.88万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Searching for New Physics with Ultracold Polyatomic Molecules
用超冷多原子分子寻找新物理
  • 批准号:
    545863-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 82.88万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nuclear T-violation searches using ultracold atoms and molecules
使用超冷原子和分子进行核 T 违规搜索
  • 批准号:
    SAPIN-2021-00025
  • 财政年份:
    2022
  • 资助金额:
    $ 82.88万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Spectroscopy and dynamics of cold and ultracold molecules
冷和超冷分子的光谱学和动力学
  • 批准号:
    RGPIN-2020-05441
  • 财政年份:
    2022
  • 资助金额:
    $ 82.88万
  • 项目类别:
    Discovery Grants Program - Individual
Creating ultracold radioactive molecules to search for physics beyond the standard model
创造超冷放射性分子来寻找标准模型之外的物理现象
  • 批准号:
    567954-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 82.88万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Experiments with ultracold polar molecules in magic traps
魔法陷阱中超冷极性分子的实验
  • 批准号:
    2748102
  • 财政年份:
    2022
  • 资助金额:
    $ 82.88万
  • 项目类别:
    Studentship
SimPoMol: Quantum Simulation with Ultracold Polar Molecules
SimPoMol:超冷极性分子的量子模拟
  • 批准号:
    EP/X023354/1
  • 财政年份:
    2022
  • 资助金额:
    $ 82.88万
  • 项目类别:
    Research Grant
Quantum Simulation and Chemistry with Ultracold Mixtures and Molecules
超冷混合物和分子的量子模拟和化学
  • 批准号:
    RGPIN-2021-03585
  • 财政年份:
    2022
  • 资助金额:
    $ 82.88万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了