Promoting Students' Data Literacy through the Creation of Interactive Multimodal Representations of Biometric Data

通过创建生物识别数据的交互式多模态表示来提高学生的数据素养

基本信息

  • 批准号:
    2241751
  • 负责人:
  • 金额:
    $ 129.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

This project will promote data literacy in high school students by engaging them in learning about the Quantified Self -- the practice of using technology to track and reflect on one’s own biological, behavioral, physical, and/or emotional data. Learning activities will be designed to spark a broad interest in science and to help develop students’ informed opinions about the role of human-generated data in public life. To achieve this goal, the project will develop and test software tools as well as lesson and professional development materials with which students and teachers can explore, analyze, and create novel, multimodal, and interactive representations of data, recorded by wearable biosensing devices. Students will learn about how data from their bodies can be captured and interpreted through hands-on STEM activities that include the creation of interactive data representations. Students will design and execute small exploration projects to answer their own questions and create offline and online artifacts to communicate their findings. Students will engage in discussions that consider the privacy implications of using data-fueled services, applications, and technologies and critically evaluate how their personal data is being used. During and after the project, instructors and students will have opportunities to connect with industry partners who work with biosensing and wearable technologies, and to access career and college readiness resources relevant to these and related data technology fields.This project will study how interactive and multimodal data engagement tools, grounded in relatable Quantified Self experiences, can support students’ learning and engagement with and about data, (neuro)biology, and bioinformatics. To achieve this, the project will design tools and materials in collaboration with teachers using a culturally responsive, participatory design approach, to ensure that the project activities will appeal to a range of students' interests and that it will promote equity of participation in STEM education. The project will also examine how industry/mentor partnerships and an online platform can help learners contextualize their own cognition and behavior within population-wide patterns and build awareness of careers in data science, biology, and bioinformatics. Data will be collected through surveys, interviews, and student work artifacts. The analysis approach will include both qualitative and quantitative approaches to understand the impact of the project on student learning and engagement. This project addresses the pervasive challenges of building data and science literacy, increasing participation in STEM/ICT fields, and promoting equity in STEM/ICT workforce and career preparation. By engaging students in creating novel, multimodal data representations and evaluating their own data, the project aims to empower them to use data and science as tools for generating knowledge about issues that concern them and to consider careers in data-related fields. The project anticipates reaching 25 teachers, 15 mentors, and 400-600 students within the project term, and more via an open-source software and curriculum. This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将促进高中生的数据素养,让他们学习量化自我-使用技术跟踪和反映自己的生物,行为,身体和/或情感数据的实践。学习活动的目的是激发学生对科学的广泛兴趣,并帮助学生对人类生成的数据在公共生活中的作用形成知情的意见。为了实现这一目标,该项目将开发和测试软件工具以及课程和专业发展材料,学生和教师可以探索,分析和创建由可穿戴生物传感设备记录的数据的新颖,多模式和交互式表示。学生将了解如何从他们的身体数据可以通过动手STEM活动,包括创建交互式数据表示捕获和解释。学生将设计和执行小型探索项目来回答自己的问题,并创建离线和在线工件来传达他们的发现。学生将参与讨论,考虑使用数据驱动的服务,应用程序和技术的隐私影响,并批判性地评估他们的个人数据是如何被使用的。在项目期间和之后,教师和学生将有机会与从事生物传感和可穿戴技术的行业合作伙伴联系,并访问与这些和相关数据技术领域相关的职业和大学准备资源。该项目将研究互动和多模式数据参与工具如何基于相关的量化自我体验,支持学生学习和参与数据,(神经)生物学和生物信息学。为实现这一目标,该项目将与教师合作,采用文化上敏感的参与式设计方法设计工具和材料,以确保项目活动能够吸引一系列学生的兴趣,并促进科学、技术、工程和数学教育的公平参与。该项目还将研究行业/导师合作伙伴关系和在线平台如何帮助学习者在人口模式中了解自己的认知和行为,并建立对数据科学,生物学和生物信息学职业的认识。数据将通过调查,访谈和学生作品收集。分析方法将包括定性和定量方法,以了解项目对学生学习和参与的影响。该项目解决了建立数据和科学素养,增加STEM/ICT领域的参与,促进STEM/ICT劳动力和职业准备的公平性的普遍挑战。通过让学生参与创建新颖的多模态数据表示和评估自己的数据,该项目旨在使他们能够使用数据和科学作为工具,以生成有关他们所关注的问题的知识,并考虑在数据相关领域的职业生涯。该项目预计将在项目期限内达到25名教师,15名导师和400-600名学生,并通过开源软件和课程提供更多信息。该项目由学生和教师创新技术体验(ITEST)计划资助,该计划支持建立对实践,计划元素,背景和过程的理解的项目,有助于增加学生对科学,技术,工程,信息和通信技术(ICT)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Camillia Matuk其他文献

Camillia Matuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Camillia Matuk', 18)}}的其他基金

Collaborative Research: StudyCrafter: An AI-Supported Platform for Engaging Learners to Conduct Research with Human Subjects
协作研究:StudyCrafter:人工智能支持的平台,用于吸引学习者对人类受试者进行研究
  • 批准号:
    2142320
  • 财政年份:
    2022
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Design guidelines for dynamic visualizations
合作研究:HCC:Medium:动态可视化的设计指南
  • 批准号:
    2106537
  • 财政年份:
    2021
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
Crowdsourcing neuroscience: An interactive cloud-based citizen science platform for high school students, teachers, and researchers
众包神经科学:面向高中生、教师和研究人员的基于云的交互式公民科学平台
  • 批准号:
    1908482
  • 财政年份:
    2019
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: Building students' data literacy through the co-design of curriculum by mathematics and art teachers
协作研究:通过数学和艺术教师共同设计课程来培养学生的数据素养
  • 批准号:
    1908557
  • 财政年份:
    2019
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
EXP: Collaborative Research: Empowering Learners to Conduct Experiments
EXP:协作研究:授权学习者进行实验
  • 批准号:
    1736065
  • 财政年份:
    2017
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant

相似海外基金

Community, Identity, and Competence: Supporting Low-Income Students in Computing and the Data Sciences at the University of Connecticut
社区、身份和能力:支持康涅狄格大学计算机和数据科学领域的低收入学生
  • 批准号:
    2322495
  • 财政年份:
    2024
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
Big Data Analytics Emerging Scholar (e-Scholar) Program for Minority Students
少数民族学生大数据分析新兴学者(e-Scholar)计划
  • 批准号:
    10554786
  • 财政年份:
    2023
  • 资助金额:
    $ 129.02万
  • 项目类别:
Collaborative Research: Integrating Students’ Interests, Identities and Ways of Knowing with Network Visualization Tools to Explore Data Literacy Concepts
协作研究:将学生的兴趣、身份和认知方式与网络可视化工具相结合,探索数据素养概念
  • 批准号:
    2241706
  • 财政年份:
    2023
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cybertraining to Develop FAIR Data Competencies for Bioengineering Students
合作研究:网络培训:试点:通过网络培训为生物工程学生培养公平数据能力
  • 批准号:
    2321121
  • 财政年份:
    2023
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
Designing Learning Technology Environments for Middle School Students to Analyze and Interpret Data Visualizations
为中学生设计学习技术环境来分析和解释数据可视化
  • 批准号:
    2327465
  • 财政年份:
    2023
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
NRT-AI: Data in Engineering and Society: Converging Applications, Research, and Training Enhancements for Students
NRT-AI:工程和社会中的数据:融合应用、研究和学生培训增强
  • 批准号:
    2244574
  • 财政年份:
    2023
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Students’ Interests, Identities and Ways of Knowing with Network Visualization Tools to Explore Data Literacy Concepts
协作研究:将学生的兴趣、身份和认知方式与网络可视化工具相结合,探索数据素养概念
  • 批准号:
    2241705
  • 财政年份:
    2023
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Cybertraining to Develop FAIR Data Competencies for Bioengineering Students
合作研究:网络培训:试点:通过网络培训为生物工程学生培养公平数据能力
  • 批准号:
    2321122
  • 财政年份:
    2023
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
A Model Program to Engage Students in Authentic, Technology-Infused Coastal Research and Monitoring: Building Student Data Literacy and Career Competency through Partnership
让学生参与真实、技术注入的沿海研究和监测的示范项目:通过合作培养学生的数据素养和职业能力
  • 批准号:
    2148520
  • 财政年份:
    2022
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
Developing Students’ Systems Thinking and Data Analytics Skills in Civil and Environmental Engineering
培养学生土木与环境工程的系统思维和数据分析技能
  • 批准号:
    2142131
  • 财政年份:
    2022
  • 资助金额:
    $ 129.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了