Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
基本信息
- 批准号:2242084
- 负责人:
- 金额:$ 59.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Music is everywhere, played and enjoyed in every known human culture, past and present. Most people spontaneously engage with and enjoy music. Despite major structural differences across cultures (in melodies, harmonies, timbres, rhythms, etc.), listeners are able to appreciate and rapidly learn music to which they were never exposed. Becoming familiar with – and enjoying – an unfamiliar musical culture implies acquiring implicit knowledge of the rules that govern it, for example melodies and rhythms. People also automatically build on their own knowledge when listening to music: their reaction to any music – familiar or not – reflects their own musical culture. This project combines computational and brain research techniques to elucidate the mechanisms that form the basis for this compelling human phenomenon: enculturation. Music as a cultural object, but also as a signal that can be quantified, constitutes an ideal domain to investigate this important type of learning. Understanding the mechanisms that form the basis for music enculturation will help us explain how we acquire the rules and norms of a cultural domain more broadly. A musical signal can be described as a sequence of symbols: notes of specific pitches and durations that ultimately form the melody we hear. These musical sequences can be used as input to a computational model (e.g., the well-known model named IDyOM) that computes their statistics, over many large corpora of musical scores. When trained on musical scores from different cultures, the model ‘learns’ the cultural specificities. This project harnesses the power and analytic transparency of this model to investigate the neural and computational mechanisms that underlie musical enculturation: people’s responses to music reflect their long-term exposure to their own culture, but they can also rapidly learn and enjoy a music they were never exposed to. The researchers implement a series of experiments, based on behavior, neuroimaging, and neurophysiology in an animal model, to examine the neural underpinnings of long-term exposure to a familiar musical culture and short-term exposure to a non-familiar musical culture. The data tell us not just about how music is learned within and across cultures but also provide mechanistic insight into how complex statistical information reflected in cultural domains is acquired and put to use. The researchers will also engage with the public and conduct outreach to high school students to engage them in research on music and culture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
音乐无处不在,在过去和现在的每一个已知的人类文化中播放和享受。大多数人会自发地参与并享受音乐。尽管不同文化在结构上存在很大差异(旋律、和声、音色、节奏等),听众能够欣赏和快速学习他们从未接触过的音乐。熟悉并享受一种不熟悉的音乐文化意味着获得关于支配它的规则的隐性知识,例如旋律和节奏。人们在听音乐时也会自动建立自己的知识:他们对任何音乐的反应-熟悉与否-反映了他们自己的音乐文化。该项目结合了计算和大脑研究技术,以阐明形成这种引人注目的人类现象的基础的机制:文化适应。音乐作为一种文化对象,也作为一种可以量化的信号,构成了研究这种重要学习类型的理想领域。了解音乐文化适应的机制将有助于我们更广泛地解释我们如何获得文化领域的规则和规范。 音乐信号可以被描述为一系列符号:特定音高和持续时间的音符,最终形成我们听到的旋律。这些音乐序列可以用作计算模型的输入(例如,著名的模型IDyOM),它计算了许多大型乐谱语料库的统计数据。当接受来自不同文化的乐谱训练时,模型“学习”了文化的特殊性。这个项目利用这个模型的力量和分析透明度来研究音乐文化适应的神经和计算机制:人们对音乐的反应反映了他们长期接触自己的文化,但他们也可以快速学习和享受他们从未接触过的音乐。研究人员在动物模型中进行了一系列基于行为、神经成像和神经生理学的实验,以研究长期接触熟悉的音乐文化和短期接触不熟悉的音乐文化的神经基础。这些数据不仅告诉我们音乐是如何在文化内部和跨文化学习的,而且还提供了对文化领域中反映的复杂统计信息是如何获得和使用的机制性见解。研究人员还将与公众接触,并对高中生进行外展,让他们参与音乐和文化的研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Poeppel其他文献
Imagined speech influences perceived loudness of sound
- DOI:
doi:10.1038/s41562-018-0305-8 - 发表时间:
2018 - 期刊:
- 影响因子:29.9
- 作者:
Xing Tian;Nai Ding;Xiangbing Teng;Fan Bai;David Poeppel - 通讯作者:
David Poeppel
Asymmetric Sampling in Time: Evidence and perspectives
时间上的非对称抽样:证据与观点
- DOI:
10.1016/j.neubiorev.2025.106082 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:7.900
- 作者:
Chantal Oderbolz;David Poeppel;Martin Meyer - 通讯作者:
Martin Meyer
Magnetoencephalography and magnetic source imaging.
脑磁图和磁源成像。
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
T. P. Roberts;David Poeppel;Howard A. Rowley - 通讯作者:
Howard A. Rowley
Time-resolved hemispheric lateralization of audiomotor functional connectivity during covert speech production
隐性言语产生过程中听运动功能连接的时间分辨半球偏侧化
- DOI:
10.1016/j.celrep.2024.115137 - 发表时间:
2025-01-28 - 期刊:
- 影响因子:6.900
- 作者:
Francesco Mantegna;Joan Orpella;David Poeppel - 通讯作者:
David Poeppel
Reconstructing spatio-temporal activities of neural sources using MEG vector beamformer
- DOI:
10.1016/s1053-8119(00)91416-2 - 发表时间:
2000-05-01 - 期刊:
- 影响因子:
- 作者:
Kensuke Sekihara;Srikantan Nagarajan;David Poeppel;Yasushi Miyashita - 通讯作者:
Yasushi Miyashita
David Poeppel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Poeppel', 18)}}的其他基金
Audiomotor Speech Rhythms and Their Perceptual Consequences
音频运动言语节奏及其感知结果
- 批准号:
2043717 - 财政年份:2021
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
Brain-to-brain synchrony in STEM learning
STEM 学习中的脑对脑同步
- 批准号:
1661016 - 财政年份:2017
- 资助金额:
$ 59.87万 - 项目类别:
Continuing Grant
INSPIRE Track 1: Crowd-sourcing neuroscience: Neural oscillations and human social dynamics
INSPIRE 轨道 1:众包神经科学:神经振荡和人类社会动力学
- 批准号:
1344285 - 财政年份:2013
- 资助金额:
$ 59.87万 - 项目类别:
Continuing Grant
Linking language and cognition to neuroscience via computation
通过计算将语言和认知与神经科学联系起来
- 批准号:
1249922 - 财政年份:2012
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329760 - 财政年份:2024
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319896 - 财政年份:2024
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329758 - 财政年份:2024
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311757 - 财政年份:2023
- 资助金额:
$ 59.87万 - 项目类别:
Standard Grant
Collaborative Research: Arecibo C3 - Center for Culturally Relevant and Inclusive Science Education, Computational Skills, and Community Engagement
合作研究:Arecibo C3 - 文化相关和包容性科学教育、计算技能和社区参与中心
- 批准号:
2321759 - 财政年份:2023
- 资助金额:
$ 59.87万 - 项目类别:
Cooperative Agreement