Collaborative Research: A global census of submesoscale energetics using in-situ drifter observations and a high resolution ocean model
合作研究:利用原位漂流者观测和高分辨率海洋模型进行全球亚尺度能量普查
基本信息
- 批准号:2242110
- 负责人:
- 金额:$ 30.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Oceanic motions are turbulent over a wide range of scales, but observationally this turbulence has primarily been investigated at the smallest ( 1km) and at the largest ( 100km) scales. Many of the properties of the oceanic flow field at intermediate scales, referred to as the submesoscales, have remained relatively elusive because of observational limitations: most high-resolution in-situ observational measurements have limited spatial range while satellite-based velocity estimates have limited spatial resolution. In addition, satellite-based surface velocities are estimated using the simplified physics assumptions (geostrophy), which breaks down at the submesoscales. Overall, a global view of kinetic energy as a function of length scale in the submesoscale range is not currently available. The primary goals of this project are i) to estimate kinetic energy distribution and transfers at submesoscales, ii) to understand the role of balanced and wave-like flow components in setting these submesoscale energetics, and iii) to quantify how and assess why these submesoscale flow properties vary globally. This research will quantify global submesoscale kinetic energy content, its dynamical characteristics, and transfers as a function of spatial-scale, using existing surface drifter observations from NOAA. Global observations of kinetic energy at these scales have never been examined before: this work is a unique opportunity to characterize the spatial patterns and seasonal variability of ocean submesoscale flows, and to assess the effects of mixed layer depth and surface forcing on energy content at these scales. These estimates will provide the first global observational baseline to compare against future observations and high-resolution simulations, and one such comparison will be performed in this work. In addition, these observations will elucidate the energy budget of the global ocean by quantifying energy transfers across scales. In coarse resolution climate models, subgrid-scale parameterizations represent the effects of submesoscale motions: the baseline provided by this work will help improve these parameterizations in the future. The analysis will provide a useful ground truth to validate and calibrate future satellite observations, and to quantify biases in high resolution ocean models. Improved understanding of ocean energetics also has direct relevance for the development of better subgrid scale parameterizations for ocean and climate models. Additionally, this project will generate documented and open-source Python code for processing observational and synthetic Lagrangian data for future studies of ocean energetics. In terms of workforce training, this project will support one graduate student, who will learn how to analyze high-resolution model data using parallel processing tools in Python. Two undergraduate students will conduct suitable research projects and will be mentored through the Research Experiences for Undergraduates program at two different institutions. Two early-career scientists will be supported by this project.To achieve its goals, this study will analyze the position and velocity data from the drifting surface buoys of the Global Drifter Program, with the help of two-point spatial statistics. Specifically, it will use the second order structure function to quantify how kinetic energy is distributed as a function of scale, and the third order structure function to quantify how kinetic energy is transferred across scales. Additionally, it will make use of Lagrangian filtering to quantify the statistical properties of and interactions between balanced and wave-like motions. These observational data analyses will be supported by the analysis of a high-resolution global ocean simulation, which will allow for the quantification of the biases caused by Lagrangian sampling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海洋运动在很大范围内是湍流的,但从观测上看,这种湍流主要是在最小(1公里)和最大(100公里)的尺度上进行研究的。由于观测限制,被称为亚中尺度的中间尺度海洋流场的许多特性仍然相对难以捉摸:大多数高分辨率现场观测测量的空间范围有限,而基于卫星的速度估计的空间分辨率有限。此外,利用简化的物理假设(地转假设)估计基于卫星的地表速度,这种假设在次中尺度分解。总体而言,目前还没有关于动能在次中尺度范围内作为长度尺度的函数的全球观点。该项目的主要目标是:i)估计亚中尺度上的动能分布和传输;ii)了解平衡的波状流动成分在确定这些亚中尺度能量学中的作用;iii)量化这些亚中尺度流动特性的全球差异并评估其原因。这项研究将利用NOAA现有的地表漂移观测,量化全球亚中尺度动能含量及其动力学特征,并将其作为空间尺度的函数进行传输。在这些尺度上对动能的全球观测以前从未被审查过:这项工作是一个独特的机会,可以描述海洋亚中尺度流动的空间模式和季节变化,并评估混合层深度和表面强迫对这些尺度上能量含量的影响。这些估计将提供第一个全球观测基线,以便与未来的观测和高分辨率模拟进行比较,在这项工作中将进行这样的比较。此外,这些观测将通过量化跨尺度的能量转移来阐明全球海洋的能量收支。在粗分辨率气候模式中,次网格尺度的参数化表示亚中尺度运动的影响:这项工作提供的基线将有助于在未来改进这些参数化。这一分析将提供有用的地面事实,以验证和校准未来的卫星观测,并量化高分辨率海洋模型中的偏差。对海洋能量学的更好理解也与海洋和气候模式更好的次网格尺度参数的发展有直接关系。此外,该项目将为未来的海洋能量学研究生成用于处理观测和合成拉格朗日数据的文件化和开放源码的Python代码。在劳动力培训方面,该项目将支持一名研究生,他将学习如何使用Python中的并行处理工具分析高分辨率模型数据。两名本科生将进行合适的研究项目,并将通过两个不同院校的本科生研究经验计划进行指导。这项研究将支持两名职业生涯早期的科学家。为了实现其目标,本研究将分析全球漂流计划漂流表面浮标的位置和速度数据,并借助两点空间统计。具体地说,它将使用二阶结构函数来量化动能作为尺度函数的分布,使用三阶结构函数来量化动能如何跨尺度转移。此外,它还将利用拉格朗日滤波来量化平衡运动和波状运动的统计特性和相互作用。这些观测数据分析将得到高分辨率全球海洋模拟分析的支持,这将允许量化拉格朗日采样造成的偏差。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dhruv Balwada其他文献
Dhruv Balwada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site Mystic Aquarium: Plankton to Whales: Consequences of Global Change within Marine Ecosystems
合作研究:REU 站点神秘水族馆:浮游生物到鲸鱼:海洋生态系统内全球变化的后果
- 批准号:
2349354 - 财政年份:2024
- 资助金额:
$ 30.69万 - 项目类别:
Continuing Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
$ 30.69万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341859 - 财政年份:2024
- 资助金额:
$ 30.69万 - 项目类别:
Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
- 批准号:
2322205 - 财政年份:2024
- 资助金额:
$ 30.69万 - 项目类别:
Standard Grant
Collaborative Research: REU Site Mystic Aquarium: Plankton to Whales: Consequences of Global Change within Marine Ecosystems
合作研究:REU 站点神秘水族馆:浮游生物到鲸鱼:海洋生态系统内全球变化的后果
- 批准号:
2349353 - 财政年份:2024
- 资助金额:
$ 30.69万 - 项目类别:
Continuing Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
- 批准号:
2322206 - 财政年份:2024
- 资助金额:
$ 30.69万 - 项目类别:
Standard Grant
Collaborative Research: Disciplinary Improvements for Past Global Change Research: Connecting Data Systems and Practitioners
协作研究:过去全球变化研究的学科改进:连接数据系统和从业者
- 批准号:
2347014 - 财政年份:2023
- 资助金额:
$ 30.69万 - 项目类别:
Standard Grant
Collaborative Research: From Global to Local: Geochemistry of Global Phosphate Ores and Implications for Tracing the Environmental Impacts of Fertilizers Utilization
合作研究:从全球到地方:全球磷矿石的地球化学以及追踪化肥利用对环境影响的意义
- 批准号:
2305947 - 财政年份:2023
- 资助金额:
$ 30.69万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317826 - 财政年份:2023
- 资助金额:
$ 30.69万 - 项目类别:
Continuing Grant
Collaborative Research: From Peaks To Slopes To Communities, Tropical Glacierized Volcanoes As Sentinels of Global Change: Integrated Impacts On Water, Plants and Elemental Cycling
合作研究:从山峰到斜坡到社区,热带冰川火山作为全球变化的哨兵:对水、植物和元素循环的综合影响
- 批准号:
2317854 - 财政年份:2023
- 资助金额:
$ 30.69万 - 项目类别:
Continuing Grant