Variational Techniques in Nonsmooth Optimization
非光滑优化中的变分技术
基本信息
- 批准号:254179842
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Finite and infinite dimensional optimization problems naturally arise in a vast array of applied and theoretical problems in the natural sciences, business and economics, management sciences, information sciences, and engineering. A common theme in modern methods, theory, and applications is nonsmoothness. Nonsmoothness arises either directly through the modeling structure or indirectly through the variational properties of the optimal value function and solution mapping. Prominent examples where nonsmoothness plays a central role is in sparsity optimization, maximum likelihood methods for robust statistics, machine learning, robust optimization, mathematical programs with equilibrium constraints (MPECs), mathematical programs with vanishing constraints (MPVCs), (generalized) Nash equilibrium problems ((G)NEPs) or eigenvalue optimization, just to name a few areas. The theoretical tools for dealing with nonsmoothness are subsumed under the label "variational analysis", which comprises convex, nonsmooth and set-valued analysis among other things. The focus of this research project lies on smoothing methods, using variational techniques for both constructing and analyzing smooth approximations of nonsmooth functions.Smoothing methods constitute a standard approach to solving nonsmooth and constrained optimization problems by solving a related sequence of unconstrained smooth approximations. The approximations are constructed so that cluster points of the solutions or stationary points of the approximating smooth problems are solutions or stationary points for the limiting nonsmooth or constrained optimization problem. In the setting of convex programming, there is now great interest in these methods for solving very large-scale problems, where first-order methods for convex nonsmooth optimization have been very successful. In a small- to medium-scale setting, however, second-order methods, in particular, semismooth Newton methods received much attention and are now being used in the infinite-dimensional setting to solve PDE-constrained optimization problems. This project emphasizes so-called epi-smoothing functions, which rely on the notionof epi-convergence of sequences of functionals, and includes two broad areas of study: The first is on second-order methods for a certain class of epi-smoothing functions, namely for those based on infimal convolution, and the second aims at adapting the concept of epi-smoothing to infinite-dimensional spaces due to the importance of epi-convergence in the function space setting. In addition to the epi-smoothing, integral convolution smoothing functions are to be analyzed in order to generalize and strengthen existing results for this important class of smoothing functions.
有限维和无限维优化问题自然出现在自然科学、商业和经济学、管理科学、信息科学和工程学中的大量应用和理论问题中。 现代方法、理论和应用中的一个共同主题是非光滑性。非光滑性直接通过建模结构或间接通过最优值函数和解映射的变分性质产生。非光滑性发挥核心作用的突出例子是稀疏优化,鲁棒统计的最大似然方法,机器学习,鲁棒优化,具有平衡约束的数学规划(MPEC),具有消失约束的数学规划(MPVC),(广义)纳什均衡问题(G)NEP)或特征值优化,仅举几个领域。处理非光滑性的理论工具被归入“变分分析”的标签下,其中包括凸,非光滑和集值分析等。该研究项目的重点在于光滑方法,使用变分技术来构造和分析非光滑函数的光滑逼近。光滑方法通过求解相关的无约束光滑逼近序列来构成解决非光滑和约束优化问题的标准方法。构造近似,使得近似光滑问题的解的聚类点或稳定点是极限非光滑或约束优化问题的解或稳定点。在凸规划的设置,现在有很大的兴趣在这些方法来解决非常大规模的问题,其中凸非光滑优化的一阶方法已经非常成功。 然而,在中小规模的设置,二阶方法,特别是半光滑牛顿法受到了很大的关注,现在正在使用的无限维设置,以解决偏微分方程约束的优化问题。该项目强调所谓的epi平滑函数,它依赖于泛函序列的epi收敛的概念,并包括两个广泛的研究领域:第一个是关于一类epi光滑函数的二阶方法,即基于下底卷积的epi光滑函数,第二个目标是适应epi平滑的概念,无限维空间,由于epi收敛的重要性,在功能空间设置。除了epi平滑,积分卷积平滑函数进行分析,以推广和加强现有的结果,这类重要的平滑函数。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Epi-convergence Properties of Smoothing by Infimal Convolution
有限卷积平滑的外收敛特性
- DOI:10.1007/s11228-016-0362-y
- 发表时间:2016
- 期刊:
- 影响因子:1.6
- 作者:James V. Burke;Tim Hoheisel
- 通讯作者:Tim Hoheisel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Tim Hoheisel其他文献
Professor Dr. Tim Hoheisel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Tim Hoheisel', 18)}}的其他基金
Anwendungen von "Variational Analysis" in Optimierung und nichtlinearen Gleichungssystemen
“变分分析”在优化和非线性方程系统中的应用
- 批准号:
204228752 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Fellowships
相似国自然基金
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
相似海外基金
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Creating a reflective, assessment workbook for University teachers to enhance teaching techniques and improve student engagement, by incorporating International Baccalaureate (IB) teaching practices
通过纳入国际文凭 (IB) 教学实践,为大学教师创建反思性评估工作簿,以提高教学技巧并提高学生参与度
- 批准号:
24K06129 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
- 批准号:
24K20733 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of new molecular self-temperature sensing techniques using luminescence-absorption hybrid thermometry
利用发光-吸收混合测温法开发新型分子自温度传感技术
- 批准号:
24K17691 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel techniques of percutaneous sonography-guided surgical operations (SonoSurgery
经皮超声引导外科手术新技术(SonoSurgery
- 批准号:
10087309 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
ConSenT: Connected Sensing Techniques: Cooperative Radar Networks Using Joint Radar and Communication Waveforms
ConSenT:互联传感技术:使用联合雷达和通信波形的协作雷达网络
- 批准号:
EP/Y035933/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
ERI: SDR Beyond Radio: Enabling Experimental Research in Multi-Node Optical Wireless Networks via Software Defined Radio Tools and Techniques
ERI:超越无线电的 SDR:通过软件定义无线电工具和技术实现多节点光无线网络的实验研究
- 批准号:
2347514 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
- 批准号:
2348490 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant