NRT-AI: Harnessing AI for Inverse Design Training in Advanced and Sustainable Composites (IDeAS Composites)
NRT-AI:利用人工智能进行先进和可持续复合材料的逆向设计培训(IDeAS Composites)
基本信息
- 批准号:2244342
- 负责人:
- 金额:$ 300万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite the vast design space of composites, there are significant gaps between the performance, economic, and environmental targets and current design and manufacturing approaches. Most egregious are the expensive, long development cycles and the sub-optimal design that waste resources and may adversely affect the environment and climate change. The fundamental cause of such gaps is the lack of detailed understanding of the influence of the material architecture, process methods, and parameters on material microstructure evolution and subsequently the end product’s physical, economic, and environmental performance. This National Science Foundation Research Traineeship (NRT), harnessing artificial intelligence (AI) for Inverse Design Training in Advanced and Sustainable Composites (IDeAS), will train students through a physics-informed, AI-based modeling and design platform which will enable the discovery of new composites materials forms and relevant new manufacturing methodologies. This NRT award to Clemson University will catalyze a shift in the research and discovery pathway of the trainees via a transformative AI-age curriculum co-instructed by academic faculty and industry researchers. The IDeAS Composites program will train a total of 50 students; of these, 25 will be NRT-funded IDeAS fellows and the remaining 25 would be identified as IDeAS scholars. The program will draw trainees from computer science, data science, statistical science, mechanical engineering, automotive engineering, and materials science and will empower trainees with an academia–industry co-trained skill set that will ensure their success in the AI age. The research theme of this NRT program is focused on discovering and investigating the effectiveness of a physics-informed, machine-learning-based inverse design platform for developing new composite material architectures and manufacturing methodologies. The program will train a cohort of graduate students with deep, specialized expertise supported by broad, cross-skill knowledge, and equip them with a unique “DNA-shaped” skill set collaboratively facilitated by both academic and industry experts. Specifically, the program will (1) catalyze interdisciplinary research at the intersection of AI and the inverse design of composites and manufacturing innovation via constructing a “digital life cycle” which is a suite of high-fidelity models for simulating a composite component’s life cycle, investigating the application of machine-learning methods for inverse composite material architecture and manufacturing process design, and developing an inverse design approach for integrated material and manufacturing design; (2) explore a combined graduate and undergraduate student training model comprising a composites inverse design capstone and a research design, development, and demonstration (RD&D) project centering on research outcomes applied to industry problems; (3) create a diverse, equitable, and inclusive environment fostering interdisciplinary collaboration in which trainees are prepared for careers requiring a unique “DNA-shaped” skill set; and (4) establish an interdisciplinary education program to (a) prepare next-generation composites engineering graduates (altogether 50 by year 5) who will have AI-enabled inverse design expertise and skills necessary to meet the unique challenges of the coming AI age and to thrive in the composites industry, and (b) train the current workforce to enhance their knowledge and foster dissemination of AI methods and principles in the composites engineering community.The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管复合材料的设计空间很大,但在性能、经济和环境目标与当前的设计和制造方法之间存在着巨大的差距。最令人震惊的是昂贵、漫长的开发周期和次优设计,浪费资源,可能对环境和气候变化产生不利影响。造成这种差距的根本原因是缺乏对材料结构、工艺方法和参数对材料微观结构演变以及最终产品的物理、经济和环境性能的影响的详细了解。这个国家科学基金会研究培训(NRT),利用人工智能(AI)进行先进和可持续复合材料(IDeAS)的逆向设计培训,将通过物理知识,基于人工智能的建模和设计平台培训学生,该平台将能够发现新的复合材料形式和相关的新制造方法。这项授予克莱姆森大学的NRT奖项将通过由学术教师和行业研究人员共同指导的变革性人工智能时代课程,催化受训者的研究和发现途径的转变。IDeAS复合项目将总共培训50名学生;其中25人将成为nrt资助的IDeAS研究员,其余25人将被确定为IDeAS学者。该项目将吸引来自计算机科学、数据科学、统计科学、机械工程、汽车工程和材料科学领域的学员,并将为学员提供一套学术界和工业界共同培训的技能,确保他们在人工智能时代取得成功。该NRT计划的研究主题侧重于发现和调查基于物理的、基于机器学习的逆设计平台的有效性,以开发新的复合材料架构和制造方法。该项目将培养一批具有深厚专业知识的研究生,并以广泛的跨技能知识为后盾,在学术和行业专家的共同推动下,为他们提供独特的“dna形”技能。具体而言,该项目将(1)通过构建“数字生命周期”(一套高保真模型,用于模拟复合材料组件的生命周期)、研究机器学习方法在复合材料逆结构和制造工艺设计中的应用,催化人工智能与复合材料逆设计和制造创新交叉的跨学科研究;开发了材料与制造一体化设计的逆设计方法;(2)探索由复合材料反设计顶点和以研究成果应用于行业问题为中心的研究设计、开发和示范(rd&d)项目组成的研究生和本科生联合培养模式;(3)创造一个多样化、公平和包容的环境,促进跨学科合作,使学员为需要独特“dna形”技能的职业做好准备;(4)建立跨学科教育计划,以(a)培养下一代复合材料工程毕业生(到第5年共50人),他们将拥有人工智能支持的逆向设计专业知识和技能,以应对即将到来的人工智能时代的独特挑战,并在复合材料行业蓬勃发展,以及(b)培训当前的劳动力,以增强他们的知识并促进人工智能方法和原则在复合材料工程界的传播。美国国家科学基金会研究实习生(NRT)计划旨在鼓励开发和实施大胆的、具有潜在变革性的STEM研究生教育培训新模式。该项目致力于通过创新、循证、适应不断变化的劳动力和研究需求的综合培训模式,在高优先级跨学科或融合研究领域对STEM研究生进行有效培训。 该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Differentially private model publishing in cyber physical systems
网络物理系统中的差分隐私模型发布
- DOI:
10.1016/j.future.2018.04.016 - 发表时间:
2020-07 - 期刊:
- 影响因子:0
- 作者:
Tianqing Zhu;Ping Xiong;Gang Li;Wanlei Zhou;Philip S. Yu - 通讯作者:
Philip S. Yu
SEM plays an important role in the study of fossil clam shrimps
- DOI:
10.4172/2591-7641.1000006 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Gang Li - 通讯作者:
Gang Li
3-D Adaptive Finite-Element Modeling of Marine Controlled-Source Electromagnetics with Seafloor Topography Based on Secondary Potentials
基于二次势的海底地形海洋受控源电磁学 3-D 自适应有限元建模
- DOI:
10.1007/s00024-018-1921-y - 发表时间:
2018-06 - 期刊:
- 影响因子:2
- 作者:
Yixin Ye;Yuguo Li;Gang Li;Wenwu Tang;Zhiyong Zhang - 通讯作者:
Zhiyong Zhang
A single nucleotide polymorphism (SNP) assay for population stratification test between eastern Asians in association studies
关联研究中东亚人群体分层测试的单核苷酸多态性 (SNP) 测定
- DOI:
10.5897/ajb10.1424 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
T. Jin;Gang Li;D. Lin;Hongjuan Liang;Qing Wang - 通讯作者:
Qing Wang
Imaging characters of the lung cancer phantoms under the simulative clinical condition performed
模拟临床条件下肺癌体模的成像特征
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.3
- 作者:
Jie Zhang;Yu Chen;Gang Li;Xiaoming Jiang - 通讯作者:
Xiaoming Jiang
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
SHINE: Understanding the Impact of Solar Energetic Particles and Forbush Decreases on the Global Electric Circuit
SHINE:了解太阳能高能粒子和福布什减少对全球电路的影响
- 批准号:
2301365 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
ANSWERS: Understanding and Forecasting Solar Energetic Particles in the Inner Solar System and Earth's Magnetosphere
答案:了解和预测内太阳系和地球磁层中的太阳高能粒子
- 批准号:
2149771 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
Collaborative Research: SHINE: What is Causing the Deficit of High-Energy Solar Particles in Cycle 24?
合作研究:SHINE:是什么导致第 24 周期高能太阳能粒子的不足?
- 批准号:
1622391 - 财政年份:2016
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
Collaborative Research: SHINE--Observations and Modeling of Energetic Particles Associated with Corotating Interaction Regions During Solar Cycles 23 and 24
合作研究:SHINE——第 23 和 24 太阳周期期间与共转相互作用区域相关的高能粒子的观测和建模
- 批准号:
0962658 - 财政年份:2010
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
CAREER: Multiscale Thermomechanical Analysis of Nanomaterials and Nanostructures
职业:纳米材料和纳米结构的多尺度热机械分析
- 批准号:
0955096 - 财政年份:2010
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
CAREER: Transport of Ions and Electrons in Solar Energetic Particle Events -- Towards an Integrated Space Weather Model
职业:太阳高能粒子事件中离子和电子的传输——建立综合空间天气模型
- 批准号:
0847719 - 财政年份:2009
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Multiscale Computational Analysis of Nanoelectromechanical Systems (NEMS)
纳米机电系统 (NEMS) 的多尺度计算分析
- 批准号:
0800474 - 财政年份:2008
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
相似国自然基金
患者安全视角下医疗AI技术对医务人员风险感知的双刃剑机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI 技术的高校网络舆情监测与治理路径研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于可穿戴设备与AI动态优化的阿尔茨海默病早期生活方式干预系统研发及效应研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
成渝交通一体化背景下的高速公路智慧管控系统:大数据驱动、AI预警与数智决策
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动药物研发的技术发展趋势及重庆技术创新路径选择战略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI赋能职业教育:“智慧职教”平台教学视频核心知识抽取研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于AI的光谱-色度耦合动态调控系统技术研究及其在城乡建筑光环境优化中的应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多模态下AI技术融合在教育创新中的应用与关键技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于职业教育和产学研协同的低成本专用大模型AI系统研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
联邦学习驱动下成渝地区职业教育AI产教协同的跨区域数据共享机制与培养方案优化要素机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
- 批准号:
FT230100021 - 财政年份:2025
- 资助金额:
$ 300万 - 项目类别:
ARC Future Fellowships
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
- 批准号:
10093235 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Collaborative R&D
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Collaborative R&D
MediMusic: using AI for music therapy in care homes
MediMusic:在疗养院使用人工智能进行音乐治疗
- 批准号:
10107316 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
EU-Funded
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
- 批准号:
10110390 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
EU-Funded
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
- 批准号:
10112272 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
SME Support
GreenTower AI: Hyper-Optimized and Self-Sustaining Cell Towers for a Net-Zero UK Telecom
GreenTower AI:英国电信零净值运营的超优化且自我维持的蜂窝塔
- 批准号:
10114180 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Collaborative R&D
Museum Visitor Experience and the Responsible Use of AI to Communicate Colonial Collections
博物馆参观者体验和负责任地使用人工智能来交流殖民地收藏品
- 批准号:
AH/Z505547/1 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Research Grant