REU Site: Drivers for Machine Learning and Artificial Intelligence Practices (MAPs)
REU 网站:机器学习和人工智能实践 (MAP) 的驱动因素
基本信息
- 批准号:2244580
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning and artificial intelligence have demonstrated potential to vastly alter the efficiencies with which we operate across a multitude of applications. Biological systems that stand to benefit from advanced techniques in machine learning and artificial intelligence include all areas of digital agriculture that impact the natural earth, plants, and animals. The Research Experience for Undergraduates (REU) Site projects represent research that addresses some of the most pressing challenges to the sustainability of our world, bringing together some of the most difficult challenges at the intersection of human behavior, natural systems, and cutting-edge technology. The project serves to offer highly specialized workforce training to students with backgrounds in either computation or biological systems and offers training to work across disciplines. Equipping a generation of students to work across disciplines reveals the opportunity for addressing grand challenges with robust problem solving.Machine learning must be able to recognize and respond to complexities of the system, and biological applications bring a complex set of challenges. This REU program lies in the cross-disciplinary requirements to understand and create new advanced machine learning techniques in complex biological systems. The work carried out by students will focus on cutting edge techniques and emerging challenges. The REU program will bring three groups of 10 students together for 10 weeks of research in machine learning in biological system applications. The students will be recruited from different academic and cultural backgrounds, with REU program goals to improve their research skills; increase opportunities for success for underserved students; and prepare students for graduate school and industry opportunities in cross-disciplinary teams. We expect that all Drive for MAPs REU students will increase their competency and fluency with respect to machine learning and across complex biological applications. The site also strives to build relationships with the student’s home universities to continue to expand collaborative efforts for research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习和人工智能已经表现出了极大地改变我们在众多应用程序中运行的效率的潜力。将受益于机器学习和人工智能中先进技术的生物系统包括影响自然地球,植物和动物的所有数字农业领域。本科生(REU)现场项目的研究经验代表了解决世界可持续性最紧迫的挑战的研究,在人类行为,自然系统和尖端技术的交汇处汇集了一些最困难的挑战。该项目旨在为具有计算或生物系统背景的学生提供高度专业的劳动力培训,并提供跨学科工作的培训。装备一代学生跨学科工作,可以通过解决强大的问题解决方面解决巨大的挑战的机会。机器学习必须能够识别并应对系统的复杂性,并且生物应用程序带来了一系列复杂的挑战。此REU计划在于跨学科的要求,以理解和创建复杂的生物学系统中的新高级机器学习技术。学生进行的工作将专注于最先进的技术和新兴的挑战。 REU计划将使三组10名学生聚集在一起,以进行10周的生物系统应用机器学习研究。将从不同的学术和文化背景中招募学生,并具有REU计划的目标,以提高他们的研究技能;增加服务不足的学生的成功机会;并为学生准备跨学科团队的研究生和行业机会。我们希望所有驱动力的REU学生都将在机器学习和复杂的生物学应用方面提高他们的能力和流畅性。该网站还努力与学生的家乡建立关系,以继续扩大研究的协作努力。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为是通过评估而被视为珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela Green其他文献
Pain Assessment in Cognitively Impaired, Functionally Impaired Children: Pilot Study Results
- DOI:
10.1016/j.pedn.2008.09.006 - 发表时间:
2010-08-01 - 期刊:
- 影响因子:
- 作者:
Angela McJunkins;Angela Green;K.J.S. Anand - 通讯作者:
K.J.S. Anand
005 – Pain Assessment in Cognitively Impaired Children: A Randomized Trial of Two Methods of Pain Assessment
- DOI:
10.1016/j.pedn.2008.11.007 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:
- 作者:
K.J.S. Anand;Angela Green;Angela McJunkins - 通讯作者:
Angela McJunkins
Implementing a Watcher Program to Improve Timeliness of Recognition of Deterioration in Hospitalized Children
- DOI:
10.1016/j.pedn.2021.05.011 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Stephanie Evans;Angela Green;Angela Roberson;Tammy Webb;Christopher Edwards - 通讯作者:
Christopher Edwards
Improving Family-Centered Care Through Research
- DOI:
10.1016/j.pedn.2009.09.001 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:
- 作者:
Michelle Frost;Angela Green;Bonnie Gance-Cleveland;Rebecca Kersten;Carmen Irby - 通讯作者:
Carmen Irby
Huddle up for safer healthcare: how frontline teams can work together to improve patient safety
齐心协力实现更安全的医疗保健:一线团队如何共同努力提高患者安全
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
A. Cracknell;Alison Lovatt;A. Winfield;Sofia Arkhipkina;Eileen McDonagh;Angela Green;Michael Rooney - 通讯作者:
Michael Rooney
Angela Green的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
- 批准号:82371901
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
中国恐龙骨骼化石时空分布综合研究
- 批准号:42372030
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
- 批准号:82370790
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
计算病理学技术在法医学自动化硅藻检验及溺水地点推断中的应用研究
- 批准号:82371902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Epigenomic Drivers of EBV Epithelial Cancers
EB 病毒上皮癌的表观基因组驱动因素
- 批准号:
10627690 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
A Contemporary Look at Driver Training and Its Role In Reducing Crash Risk in Novice Adolescent Drivers.
对驾驶员培训及其在降低青少年新手驾驶员碰撞风险中的作用的当代看法。
- 批准号:
10582905 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Fibroadipogenic progenitor cells as drivers of angiogenesis during muscle regeneration
纤维脂肪祖细胞作为肌肉再生过程中血管生成的驱动因素
- 批准号:
10741438 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Modeling and Dissecting Epigenetic Drivers of Gliomagenesis
神经胶质瘤发生的表观遗传驱动因素的建模和剖析
- 批准号:
10877343 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
DRIVERs: Data systems Research to Identify driVers of Ethnic & Racial Inequities in Maternal Mortality
驾驶员:识别种族驾驶员的数据系统研究
- 批准号:
10810469 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别: