CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application

CDS

基本信息

  • 批准号:
    2244976
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Deep neural networks (DNNs) have been a major driving force behind recent advances in data science and engineering. An emerging theme in DNN research is to exploit the intrinsic structure of the learning problems, such as symmetry, to improve the data-efficiency of DNNs in the small-data regime. Recent work on symmetry-preserving machine learning typically studies it in the ideal setting where the symmetry transformations are perfect, whereas in reality, however, they are usually “contaminated” by various sources of signal deformation. The aim of this project is to rigorously measure and guarantee the deformation robustness of general symmetry-preserving DNNs, as well as quantifying their resulting performance gain. Results of the research are expected to advance understanding of robust geometric deep learning, with a diverse range of applications from computer vision to scientific computing with limited data. The project will provide interdisciplinary training in applied mathematics, engineering, and data science to undergraduate and graduate students. The overarching theme of the project is to leverage mathematical tools from differential geometry, applied harmonic analysis, and applied probability to improve the statistical-efficiency of machine learning models. Special emphasis has been placed on the rigorous analysis and promotion of robust symmetry-preservation that is broadly applicable to arbitrary Lie group representations on general feature fields. In addition, the project aims to extend the idea of symmetry-preservation to deep distribution learning, and proposes a unified framework for data-efficient generation of distributions with intrinsic structures including—but not limited to—group symmetry; the improved statistical efficiency will be rigorously quantified through sample complexity analysis. The techniques to be developed in this project will be widely applicable across different disciplines, providing fundamental building blocks for the next generation of mathematical tools for the computational and geometric modeling of Big Data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)一直是数据科学和工程最新进展的主要驱动力。DNN研究中的一个新兴主题是利用学习问题的内在结构(如对称性)来提高DNN在小数据范围内的数据效率。最近关于保留对称性的机器学习的工作通常在对称变换完美的理想环境中研究它,然而,在现实中,它们通常被各种信号变形源“污染”。该项目的目的是严格测量和保证一般保密DNN的变形鲁棒性,并量化其产生的性能增益。预计研究结果将促进对强大的几何深度学习的理解,从计算机视觉到有限数据的科学计算等各种应用。该项目将为本科生和研究生提供应用数学,工程和数据科学的跨学科培训。该项目的首要主题是利用微分几何,应用调和分析和应用概率的数学工具来提高机器学习模型的学习效率。特别强调了严格的分析和推广鲁棒的保序性,广泛适用于一般特征场的任意李群表示。此外,该项目旨在将数据保留的思想扩展到深度分布学习,并提出一个统一的框架,用于数据高效生成具有内在结构的分布,包括但不限于群对称性;改进的统计效率将通过样本复杂性分析进行严格量化。该项目开发的技术将广泛应用于不同学科,为下一代大数据计算和几何建模的数学工具提供基础构建模块。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Zhu其他文献

Improving the NV generation efficiency by electron irradiation
通过电子辐照提高NV产生效率
  • DOI:
    10.3788/col202018.080201
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Bowen Zhao;Yang Dong;Shaochun Zhang;Xiangdong Chen;Wei Zhu;Fangwen Sun
  • 通讯作者:
    Fangwen Sun
Altered topological properties of the intrinsic functional brain network in patients with right-sided unilateral hearing loss caused by acoustic neuroma
听神经瘤引起的右侧单侧听力损失患者内在功能脑网络拓扑特性的改变
  • DOI:
    10.1007/s11682-022-00658-1
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zhiyuan Fan;Zhen Fan;Tianming Qiu;Liuxun Hu;Yuan Shi;Yunman Xia;Xiaoyi Sun;Yingjun Liu;Sichen Li;Mingrui Xia;Wei Zhu
  • 通讯作者:
    Wei Zhu
Pt/Ru/C nanocomposites for methanol electrooxidation: how Ru nanocrystals’ surface structure affects catalytic performance of deposited Pt particles
用于甲醇电氧化的 Pt/Ru/C 纳米复合材料:Ru 纳米晶体表面结构如何影响沉积 Pt 颗粒的催化性能
  • DOI:
    10.1039/c3qi00053b
  • 发表时间:
    2014-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Ze-Qiong Zhao;Guang-Xu Lan;Wei Zhu;Ya-Wen Zhang
  • 通讯作者:
    Ya-Wen Zhang
Applying semantic web and big data techniques toconstruct a balance model referring to stakeholders of tourism intangiblecultural heritage
应用语义网和大数据技术构建旅游非物质文化遗产利益相关者平衡模型
H-Bert: Enhancing Chinese Pretrained Models with Attention to HowNet
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Zhu
  • 通讯作者:
    Wei Zhu

Wei Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Zhu', 18)}}的其他基金

EAGER: CDS&E: Applied geometry and harmonic analysis in deep learning regularization: theory and applications
渴望:CDS
  • 批准号:
    2140982
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
SBIR Phase II: A novel 3D bioprinting system for rapid high-throughput tissue fabrication
SBIR II 期:一种用于快速高通量组织制造的新型 3D 生物打印系统
  • 批准号:
    2035835
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Cooperative Agreement
CDS&E: Applied Geometry and Harmonic Analysis in Deep Learning Regularization: Theory and Applications
CDS
  • 批准号:
    2052525
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
CDS&E: Applied Geometry and Harmonic Analysis in Deep Learning Regularization: Theory and Applications
CDS
  • 批准号:
    1952992
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
SBIR Phase I: 3D Printing of Bisphenol A-free Polycarbonates for Customizable Cell/Tissue Culture Platforms
SBIR 第一阶段:用于可定制细胞/组织培养平台的不含双酚 A 的聚碳酸酯 3D 打印
  • 批准号:
    1819239
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Simulation of Liquid Crystal Elastomers
液晶弹性体的模拟
  • 批准号:
    1016504
  • 财政年份:
    2010
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Almgren's multiple-valued functions and geometric measure theory
阿尔姆格伦的多值函数和几何测度论
  • 批准号:
    0905347
  • 财政年份:
    2009
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
  • 批准号:
    2330377
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
  • 批准号:
    24K20794
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Fellowship
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
  • 批准号:
    24K07131
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
  • 批准号:
    2339746
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2411394
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了