CDS&E: Multiscale Process Intensification of Direct Catalytic Hydrogenation of CO2 to Hydrocarbons via Cooperative Tandem Catalysis
CDS
基本信息
- 批准号:2245474
- 负责人:
- 金额:$ 47.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Significant research efforts are currently underway to develop new chemical manufacturing technologies that have the potential to decarbonize the energy and chemical industries, maintaining the prominent role of the U.S. in producing valuable chemical products and transportation fuels. Key to this continuing advance is the development of “intensified” chemical processes that combine what traditionally were multiple processing steps into a single, multifunctional operation, facilitating energy savings and cost reductions - process improvements that have broad applicability to energy, chemicals, and other manufacturing sectors. The catalyst and process design methods proposed in this research program also facilitate the development of modular manufacturing processes, increasing the efficiency, flexibility, resilience, and overall competitiveness of chemical manufacturing supply chains. With the recent revolution in domestic shale gas production, new routes to using novel catalytic systems that effectively promote a sequence of reactions (rather than a single reaction) will open the door to potentially disruptive process intensification technologies for shale gas conversion and new pathways to creating a hydrogen-based economy. This research program will support the recruitment of traditionally underrepresented students both at the graduate and undergraduate levels. An outreach activity is planned that will teach the importance of sustainable design to 1st–4th graders. The research findings will be integrated into a new graduate-level course.This project will establish the foundation of a new direction in process intensification through the development of cooperative tandem catalysts, catalysts that promote sequences of chemical reactions rather than a single reaction. Specifically, this research will address the following fundamental questions: How do multiple catalysts interact and affect individual catalytic performances in a tandem reactive process at the micro-, meso- and macro/process-scales? When is tandem catalysis desirable? How can the optimal combinations of tandem catalysts be predicted? How are multi-catalytic systems designed, synthesized, and tuned to perform a series of reactions while ensuring the desired product quality, stability, and performance at the process level? As a representative tandem catalytic system, hydrogenation of CO2 over metal oxides to produce methanol will be integrated with zeolite frameworks that selectively transform methanol to C2+ chemical products, specifically C2-C4 olefins and C5-C18 hydrocarbons. Chemical transformation of CO2 with H2 into fuels, chemicals, or chemical precursors constitutes a conceptual evolution in achieving sustainable chemical production and expediting the “green energy” transition. To better understand the interactions among reaction chemical species and the tandem catalysis, the research team plans to develop, validate, and analyze mechanistic models at the density functional theory (DFT) level and translate the results of the DFT simulations into the rate and equilibrium constants of microkinetic models. To elucidate how microscopic changes affect the macroscopic properties of a tandem catalyst system, a unique method based on order parameter analysis (originally developed in the context of studying phase transitions) will be formulated to reduce the complexity of the multi-scale reactor models. Understanding how the properties of catalysts influence the merging of reaction processes will facilitate the design and control of intensified processes, thereby saving significant time and investment for new chemical product discovery.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前正在进行重大的研究工作,以开发新的化学制造技术,这些技术有可能使能源和化学工业脱碳,保持美国在生产有价值的化学产品和运输燃料方面的突出作用。这种持续进步的关键是“强化”化学工艺的发展,这种工艺将传统上的多个加工步骤结合成一个单一的多功能操作,促进节能和降低成本--这种工艺改进广泛适用于能源、化学品和其他制造部门。该研究计划中提出的催化剂和工艺设计方法也促进了模块化制造工艺的发展,提高了化学制造供应链的效率,灵活性,弹性和整体竞争力。随着最近国内页岩气生产的革命,使用有效促进一系列反应(而不是单一反应)的新型催化系统的新途径将为页岩气转化的潜在破坏性过程强化技术和创造氢基经济的新途径打开大门。这项研究计划将支持传统上代表性不足的学生在研究生和本科层次的招聘。计划开展一项外联活动,向1 - 4年级学生讲授可持续设计的重要性。该研究成果将被整合到一个新的研究生课程中。该项目将通过开发协同串联催化剂,即促进化学反应序列而不是单一反应的催化剂,为过程强化的新方向奠定基础。具体而言,本研究将解决以下基本问题:如何多个催化剂相互作用,并影响个人的催化性能在串联反应过程中的微观,中观和宏观/过程尺度?什么时候需要串联催化?如何预测串联催化剂的最佳组合?如何设计、合成和调整多催化系统,以执行一系列反应,同时确保工艺水平上所需的产品质量、稳定性和性能?作为代表性的串联催化体系,将在金属氧化物上氢化CO2以生产甲醇与沸石骨架整合,所述沸石骨架选择性地将甲醇转化为C2+化学产物,特别是C2-C4烯烃和C5-C18烃。将CO2与H2化学转化为燃料、化学品或化学前体构成了实现可持续化学品生产和加速“绿色能源”转型的概念演变。为了更好地理解反应化学物种和串联催化之间的相互作用,研究小组计划在密度泛函理论(DFT)水平上开发,验证和分析机理模型,并将DFT模拟的结果转化为微观动力学模型的速率和平衡常数。为了阐明微观变化如何影响串联催化剂系统的宏观性质,将制定一个独特的方法,基于序参数分析(最初在研究相变的背景下开发),以减少多尺度反应器模型的复杂性。了解催化剂的性质如何影响反应过程的合并,将有助于强化过程的设计和控制,从而为新化学产品的发现节省大量的时间和投资。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MM Faruque Hasan其他文献
Systematic incorporation of inherent safety in hazardous chemicals supply chain optimization
- DOI:
10.1016/j.jlp.2020.104262 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:
- 作者:
Nitin Roy;M. Sam Mannan;MM Faruque Hasan - 通讯作者:
MM Faruque Hasan
MM Faruque Hasan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MM Faruque Hasan', 18)}}的其他基金
CAREER: Synergistic Design, Analysis and Learning of Intensified Process Systems
职业:强化过程系统的协同设计、分析和学习
- 批准号:
1943479 - 财政年份:2020
- 资助金额:
$ 47.44万 - 项目类别:
Continuing Grant
Systematic Process Intensification of Gas Separation, Conversion, and Storage
气体分离、转化和储存的系统化过程强化
- 批准号:
1606027 - 财政年份:2016
- 资助金额:
$ 47.44万 - 项目类别:
Standard Grant
相似海外基金
Multiscale Simulation of Local Mass Transfer in Gas-Liquid Flows - Expanding the Toolbox for Advanced Process Equipment Design
气液流局部传质的多尺度模拟 - 扩展先进工艺设备设计的工具箱
- 批准号:
RGPIN-2022-03189 - 财政年份:2022
- 资助金额:
$ 47.44万 - 项目类别:
Discovery Grants Program - Individual
Chemical multiscale thermodynamics based process control
基于化学多尺度热力学的过程控制
- 批准号:
RGPIN-2022-03486 - 财政年份:2022
- 资助金额:
$ 47.44万 - 项目类别:
Discovery Grants Program - Individual
Advanced Multiscale Decision-making for Process Operations and Energy Systems, and Incorporating Big Data Analytics
针对流程操作和能源系统的高级多尺度决策,并结合大数据分析
- 批准号:
RGPIN-2018-04108 - 财政年份:2022
- 资助金额:
$ 47.44万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Process Intensification of Waste Valorization Reactions
废物增值反应的多尺度过程强化
- 批准号:
RGPIN-2019-04839 - 财政年份:2022
- 资助金额:
$ 47.44万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Simulation of Local Mass Transfer in Gas-Liquid Flows - Expanding the Toolbox for Advanced Process Equipment Design
气液流局部传质的多尺度模拟 - 扩展先进工艺设备设计的工具箱
- 批准号:
RGPIN-2022-03189 - 财政年份:2022
- 资助金额:
$ 47.44万 - 项目类别:
Discovery Grants Program - Individual
Multiscale Process Modeling for 6000 Series Aluminum Alloys
6000 系列铝合金的多尺度工艺建模
- 批准号:
571909-2022 - 财政年份:2022
- 资助金额:
$ 47.44万 - 项目类别:
Alliance Grants
A Concurrent Multiscale Model for Improved Prediction of Drying Process
用于改进干燥过程预测的并行多尺度模型
- 批准号:
DP220103668 - 财政年份:2022
- 资助金额:
$ 47.44万 - 项目类别:
Discovery Projects
Performance design based on stochastic process simulation of multiscale internal structure in concrete
基于混凝土多尺度内部结构随机过程模拟的性能设计
- 批准号:
21K04211 - 财政年份:2021
- 资助金额:
$ 47.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiscale Process Intensification of Waste Valorization Reactions
废物增值反应的多尺度过程强化
- 批准号:
RGPIN-2019-04839 - 财政年份:2021
- 资助金额:
$ 47.44万 - 项目类别:
Discovery Grants Program - Individual
Elucidation and Design of NO Reduction Reaction Process by First-Principles Multiscale Simulation
通过第一性原理多尺度模拟阐明和设计 NO 还原反应过程
- 批准号:
21J10648 - 财政年份:2021
- 资助金额:
$ 47.44万 - 项目类别:
Grant-in-Aid for JSPS Fellows