CRII: AF: Variational Inequality and Saddle Point Problems with Complex Constraints
CRII:AF:具有复杂约束的变分不等式和鞍点问题
基本信息
- 批准号:2245705
- 负责人:
- 金额:$ 17.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The variational inequality (VI) problem is a general tool for modeling various optimization and equilibrium problems. Such problems have applications in traffic networks, power market pricing, signal processing, risk-averse/robust optimization, and adversarial learning. Many of these application problems impose complicated constraints that must be satisfied. These constraints can arise due to engineering, ethical or legal concerns for the context of the respective application, and often have a functional form. In some cases, the constraint function is data-driven with unknown data distribution - making it impractical to evaluate its value even at a single point. This project aims to develop novel first-order algorithms that can work for VI problems with complex constraints in functional form.Existing algorithms for VI problems assume that one can efficiently project onto the constraint sets. This assumption is not satisfied when constraints have a general functional form, even more so when the function is data-driven. Hence, the projection requirement severely restricts the applicability of current algorithms to real-world problems of consequence. The algorithms developed as part of this project will solve VI problems without requiring any projection onto complex constraints in functional form. It includes (1) the deterministic problems algorithm evaluates the VI objective and constraint function exactly; (2) data-driven problems where an exact evaluation of the VI objective or the constraint function may not be possible due to large data/unknown underlying distribution; and (3) extending these methods for min-max saddle point problems - an important specific case of the VI problem. The successful completion of this project will yield state-of-the-art algorithms for the VI problem with these complex constraint satisfaction requirements. The proposed algorithms will be equipped with provable convergence guarantees for each of the three subcases above. The project will include a comprehensive numerical validation of the proposed schemes for an equilibrium problem arising from wireless communication. The intellectual property generated as a part of this project, e.g., computer codes, data sets, research articles, and conference proceedings, will be shared with the public through open-source online repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
变分不等式(VI)问题是模拟各种优化和均衡问题的通用工具。这类问题在交通网络、电力市场定价、信号处理、风险厌恶/稳健优化和对抗性学习中都有应用。这些应用问题中的许多都施加了必须满足的复杂约束。这些限制可能是由于各自应用环境的工程、伦理或法律方面的考虑而产生的,并且通常具有功能形式。在某些情况下,约束函数是由数据驱动的,具有未知的数据分布,这使得即使在单个点上评估其值也是不切实际的。该项目旨在开发一种新的一阶算法,能够处理函数形式的复杂约束的虚拟仪器问题,现有的虚拟仪器问题的算法假设一个人可以有效地投影到约束集上。当约束具有一般的函数形式时,这一假设不被满足,当函数是数据驱动的时更是如此。因此,投影要求严重限制了当前算法对现实世界中重要问题的适用性。作为该项目的一部分开发的算法将解决VI问题,而不需要对函数形式的复杂约束进行任何投影。它包括(1)确定性问题算法准确地评估VI目标和约束函数;(2)数据驱动的问题,其中由于大数据/未知的潜在分布,可能无法准确评估VI目标或约束函数;以及(3)将这些方法扩展到最小-最大鞍点问题--VI问题的一个重要的具体情况。该项目的成功完成将为具有这些复杂约束满足要求的VI问题产生最先进的算法。所提出的算法将为上述三种子情形中的每一种配备可证明的收敛保证。该项目将包括对提议的无线通信平衡问题的方案进行全面的数值验证。作为该项目的一部分产生的知识产权,例如计算机代码、数据集、研究文章和会议记录,将通过开源在线资源库与公众共享。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accelerated Primal-Dual Methods for Convex-Strongly-Concave Saddle Point Problems
凸强凹鞍点问题的加速原对偶方法
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Khalafi, Mohammad;Boob, Digvijay
- 通讯作者:Boob, Digvijay
Optimal algorithms for differentially private stochastic monotone variational inequalities and saddle-point problems
- DOI:10.1007/s10107-023-01953-5
- 发表时间:2021-04
- 期刊:
- 影响因子:2.7
- 作者:Digvijay Boob;Crist'obal Guzm'an
- 通讯作者:Digvijay Boob;Crist'obal Guzm'an
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Digvijay Boob其他文献
First-order methods for Stochastic Variational Inequality problems with Function Constraints
具有函数约束的随机变分不等式问题的一阶方法
- DOI:
10.48550/arxiv.2304.04778 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Digvijay Boob;Qi Deng - 通讯作者:
Qi Deng
Private Synthetic Data Generation via GANs (Supporting PDF)
通过 GAN 生成私有合成数据(支持 PDF)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Digvijay Boob;Rachel Cummings;Dhamma Kimpara;U. Tantipongpipat;Chris Waites;Kyle Zimmerman - 通讯作者:
Kyle Zimmerman
Theoretical properties of the global optimizer of two layer neural network
两层神经网络全局优化器的理论性质
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Digvijay Boob;Guanghui Lan - 通讯作者:
Guanghui Lan
Digvijay Boob的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Digvijay Boob', 18)}}的其他基金
CAREER: Foundations of semi-infinite and equilibrium constrained optimization
职业:半无限和平衡约束优化的基础
- 批准号:
2340858 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
相似国自然基金
基于前瞻性队列的双酚AF联合果糖加重代谢损伤的靶向代谢组学研究
- 批准号:2025JJ30049
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
U2AF2-circMMP1信号轴促进结直肠癌进展的分子机制研究
- 批准号:2025JJ80723
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
U2AF2精氯酸甲基化调控RNA转录合成在MTAP缺失骨肉瘤T细胞耗竭中的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
BDA-366通过MYD88/NF-κB/PGC1β通路杀伤 KMT2A/AF9 AML细胞的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
Lu AF21934减少缺血性脑卒中导致的神经损伤的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
H2S介导剪接因子BraU2AF65a的S-巯基化修饰促进大白菜开花的分子机制
- 批准号:32372727
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
线粒体活性氧介导的胎盘早衰在孕期双酚AF暴露致婴幼儿神经发育迟缓中的作用
- 批准号:82304160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U2AF2-circMMP1调控能量代谢促进结直肠癌肝转移的分子机制
- 批准号:82303789
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant














{{item.name}}会员




