CRII: III: Pursuing Interpretability in Utilitarian Online Learning Models
CRII:III:追求功利在线学习模式的可解释性
基本信息
- 批准号:2245946
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In today's world, the real-time generation of enormous amounts of data has become commonplace, spanning domains such as e-commerce, social media, environmental science, urban disaster and pandemic monitoring, and many others. Such streaming data necessitate data mining (DM) models that can analyze them in time as they emerge, derive actionable insights, and make adjustments on the fly. For instance, predicting crowd movement due to public events (such as concerts, games, parades, and protests) based on data streaming from social media and city sensors can aid in reducing the traffic by steering clear of overcrowded areas. However, as DM models become more prevalent in practice, interpretability has emerged as a vital issue. User comprehension and trust in DM model outputs are critical for their acceptance in daily routines and workflows. Nonetheless, existing research on data streams has focused mainly on model accuracy, producing models that are too complex for human interpretation. This gap between DM researchers and practitioners calls for new research that optimizes model accuracy and interpretability simultaneously. This project aims to bridge the gap by developing novel online algorithms that are transparent to human users and can provide a complete explanation of the logic behind each prediction, earning the trust of human operators and increasing legal defensibility when used to support decision-making in crucial domains such as healthcare, economy, security, and social goods.The overarching goal of this project is to advance interpretability research of online DM models through three research objectives: (1) understanding the dynamism of varying feature spaces and its impact on model structure; (2) quantifying model prediction uncertainty in the absence of adequate supervision labels; and (3) indexing and elucidating model inference paths. To achieve these objectives, the project will focus on four research thrusts. The first thrust will develop novel algorithms that capture and model the variation patterns of feature spaces through an expository feature correlation graph, allowing for joint learning of graphs and predictive models. The second thrust will focus on developing unsupervised methods to quantify the uncertainty of model predictions and identify geometric manifolds underlying data streams with memory-efficient structures. The third thrust will devise new systems to index, track, and illustrate the complete generation process of online predictions. The fourth thrust will establish evaluation metrics and protocols to standardize interpretability measurement in streaming data contexts. The project aims to contribute to interpretable data mining and machine learning research, which will help bridge the gap between data scientists and domain-specific forecasting experts. The educational component of the project will involve mentoring and educating researchers interested in pursuing DM careers in academia or industry, with a particular focus on underrepresented, financially disadvantaged, or disabled undergraduate students in computer science research. The project will also pioneer new classes at the forefront of data mining research and organize workshops at city libraries to engage with the broader public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当今世界,大量数据的实时生成已经变得司空见惯,跨越电子商务、社交媒体、环境科学、城市灾害和流行病监测等领域。这种流数据需要数据挖掘(DM)模型,这些模型可以在它们出现时及时分析它们,获得可操作的见解,并进行动态调整。例如,基于来自社交媒体和城市传感器的数据流预测由于公共事件(如音乐会,游戏,游行和抗议)引起的人群移动可以通过避开过度拥挤的区域来帮助减少交通。然而,随着DM模型在实践中变得越来越普遍,可解释性已经成为一个至关重要的问题。用户对DM模型输出的理解和信任对于其在日常工作和工作流程中的接受至关重要。尽管如此,现有的数据流研究主要集中在模型的准确性上,产生的模型过于复杂,无法进行人类解释。DM研究人员和实践者之间的这种差距需要新的研究,同时优化模型的准确性和可解释性。该项目旨在通过开发新的在线算法来弥合这一差距,这些算法对人类用户是透明的,可以对每个预测背后的逻辑提供完整的解释,赢得人类操作员的信任,并在用于支持医疗保健,经济,安全,该项目的总体目标是通过三个研究目标推进在线DM模型的可解释性研究:(1)理解不同特征空间的动态性及其对模型结构的影响;(2)在缺乏足够监督标签的情况下量化模型预测的不确定性;(3)索引和阐明模型推理路径。为了实现这些目标,该项目将侧重于四个研究重点。第一个推力将开发新的算法,通过一个暂时的特征相关图来捕获和建模特征空间的变化模式,从而实现图形和预测模型的联合学习。第二个重点将集中在开发无监督方法,以量化模型预测的不确定性,并识别具有内存高效结构的数据流的几何流形。第三个重点是设计新的系统来索引、跟踪和说明在线预测的完整生成过程。第四个重点将建立评估指标和协议,以标准化流数据上下文中的可解释性测量。该项目旨在促进可解释的数据挖掘和机器学习研究,这将有助于弥合数据科学家和特定领域预测专家之间的差距。该项目的教育部分将涉及指导和教育有兴趣在学术界或工业界从事DM职业的研究人员,特别关注计算机科学研究中代表性不足,经济困难或残疾的本科生。该项目还将在数据挖掘研究的前沿开辟新课程,并在城市图书馆组织研讨会,与更广泛的公众接触。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi He其他文献
Availability analysis of k-out-of-n: F repairable balanced systems with m sectors
k-out-of-n: F 个具有 m 个扇区的可修复平衡系统的可用性分析
- DOI:
10.1016/j.ress.2019.106572 - 发表时间:
2019-11 - 期刊:
- 影响因子:8.1
- 作者:
Gao Hongda;Cui Lirong;Yi He - 通讯作者:
Yi He
Extreme Value Inference for Heterogeneous Power Law Data
异构幂律数据的极值推断
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
J. Einmahl;Yi He - 通讯作者:
Yi He
Dynamic moves in lattice simulation of protein folding
蛋白质折叠晶格模拟中的动态运动
- DOI:
10.1142/s0129183104006315 - 发表时间:
2004 - 期刊:
- 影响因子:1.9
- 作者:
Linsen Zhang;Changjun Chen;Yi He;Yi Xiao - 通讯作者:
Yi Xiao
Study on the catalytic effect of ErCrO3 nanoparticles on the thermal decomposition of ammonia perchlorate
纳米ErCrO3对高氯酸氨热分解的催化作用研究
- DOI:
10.1134/s1070427215040230 - 发表时间:
2015 - 期刊:
- 影响因子:0.9
- 作者:
Zongxue Yu;Liang Lv;Guangyong Zeng;Lu;Yi He - 通讯作者:
Yi He
Understanding guests’ evaluation of green hotels: The interplay between willingness to sacrifice for the environment and intent vs. quality-based market signals
了解客人对绿色酒店的评价:为环境牺牲的意愿和意图与基于质量的市场信号之间的相互作用
- DOI:
10.1016/j.ijhm.2022.103229 - 发表时间:
2022 - 期刊:
- 影响因子:11.7
- 作者:
Qimei Chen;Miao Hu;Yi He;I. Lin;A. Mattila - 通讯作者:
A. Mattila
Yi He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi He', 18)}}的其他基金
CAREER: Revealing the interaction mechanisms of PICK1 using multiscale modeling
职业:使用多尺度建模揭示 PICK1 的相互作用机制
- 批准号:
2237369 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: III: Small: Taming Large-Scale Streaming Graphs in an Open World
协作研究:III:小型:在开放世界中驯服大规模流图
- 批准号:
2236578 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
LEAPS-MPS:Revealing Key Residues and Physical Interactions Drive the Structural and Dynamic Changes in Subdomains of PICK1
LEAPS-MPS:揭示关键残基和物理相互作用驱动PICK1子域的结构和动态变化
- 批准号:
2137558 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
- 批准号:2025JJ50094
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
- 批准号:JCZRYB202500652
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
- 批准号:JCZRQN202501004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
- 批准号:2025JJ50319
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
- 批准号:2025JJ50694
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ASPGR与MRC2双受体介导铱(III)配合物
脂质体抗肝肿瘤研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Ap-Exo III 联合模式识别构建降尿酸药
物筛选新方法的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
NEPhos_Phosphoregulation of ESCRT-III during nuclear envelope reformation
NEPhos_ESCRT-III 核膜重构过程中的磷酸调节
- 批准号:
EP/Z00098X/1 - 财政年份:2025
- 资助金额:
$ 17.5万 - 项目类别:
Fellowship
IUCRC Phase III University of Colorado Boulder: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三阶段科罗拉多大学博尔德分校:膜应用、科学与技术中心 (MAST)
- 批准号:
2310937 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III属窒化物半導体のイオン注入不純物活性化機構の解明と点欠陥制御
阐明III族氮化物半导体中的离子注入杂质激活机制和点缺陷控制
- 批准号:
23K21082 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
III型分泌装置に依存しない類鼻疽菌の病原性に関与する因子の同定とその機能解析
不依赖于III型分泌器的类鼻疽杆菌致病因子的鉴定及其功能分析
- 批准号:
24K10200 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Carrier recombination dynamics in III-N photodetectors
III-N 光电探测器中的载流子复合动力学
- 批准号:
2341747 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
IUCRC Phase III Virginia Institute of Marine Science for Science Center for Marine Fisheries (SCEMFIS)
IUCRC 第三阶段 弗吉尼亚海洋科学研究所海洋渔业科学中心 (SCEMFIS)
- 批准号:
2332984 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Small: Query-By-Sketch: Simplifying Video Clip Retrieval Through A Visual Query Paradigm
III:小:按草图查询:通过可视化查询范式简化视频剪辑检索
- 批准号:
2335881 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant