Higher classification theory in model theory and applications
模型理论与应用中的高级分类理论
基本信息
- 批准号:2246598
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Model theory studies the ways in which mathematical objects can be defined in some restricted formal language, and what structural properties are implied by these definability assumptions. It provides methods of converting asymptotic questions about finite structures into qualitative questions about the shape, volume or dimension of certain limiting infinite objects. This method of study originated in questions on foundations of mathematics, but in recent years it has found important applications in the study of some central objects of classical mathematics and computer science. The project investigates further these connections, with the major motivation of extending the existing techniques from binary structures (graphs) to structures of higher arity (hypergraphs), which represent a mathematical way of describing more complex networks in which interactions happen not just between two nodes at a time, but between multiple nodes simultaneously. This study will both deepen and extend the scope for applications of the infinitary model-theoretic machinery to questions in combinatorics of geometrically or algebraically arising hypergraphs, and conversely for applications of combinatorics to open questions in model theory. The project will involve training of graduate and undergraduate students.Shelah's classification program isolates combinatorial dividing lines (stability, distality, NIP, etc.) separating mathematical structures exhibiting various degrees of Gödelian behavior, from the tame ones in which one develops a “geometric” theory akin to algebraic geometry for definable sets in such structures. These tameness notions in Shelah’s classification theory are typically given by restrictions on the combinatorial complexity of definable binary relations. Many of the central results in graph combinatorics can be then improved dramatically if one restricts to graphs on the tame side of this classification, in particular to graphs arising from various algebraic or geometric configurations. The PI will investigate a higher generalization of Shelah's classification theory, where the restriction is only put on higher arity relations, focusing on n-dependence (with the case n=1 corresponding to the well studied class of NIP structures), n-stability, n-distality, and n-amalgamation, as opposed to the traditional binary case n=1. This will be applied to questions in extremal combinatorics of hypergraphs definable in various tame structures (via Keisler measures), as well as to generalizations of the polynomial expansion phenomena (Elekes-Szabó type theorems), and to the study of algebraic structures such as groups and fields definable in n-tame theories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模型论研究数学对象可以用某种受限的形式语言来定义的方式,以及这些可定义性假设所隐含的结构属性。它提供了将有限结构的渐近问题转化为关于某些有限的无限物体的形状、体积或尺寸的定性问题的方法。这种研究方法起源于数学基础的问题,但近年来它在经典数学和计算机科学的一些中心对象的研究中发现了重要的应用。该项目进一步研究了这些连接,主要动机是将现有技术从二元结构(图)扩展到更高层次的结构(超图),超图代表了描述更复杂网络的数学方式,其中交互不仅发生在两个节点之间,而且同时发生在多个节点之间。这项研究将深化和扩大无限模型理论机器的应用范围,以几何或代数产生的超图的组合学问题,并反过来为组合学的应用,以开放的问题,在模型论。该项目将涉及研究生和本科生的培训。希拉的分类程序隔离组合分界线(稳定性,远端,NIP等)。分离数学结构表现出不同程度的哥德尔行为,从驯服的人,其中一个开发了一个“几何”理论类似于代数几何的可定义集在这样的结构。在希拉的分类理论中,这些驯服的概念通常是由对可定义的二元关系的组合复杂性的限制给出的。许多中央结果图组合然后可以大大改善,如果一个限制图的驯服方面,这一分类,特别是图所产生的各种代数或几何配置。PI将研究Shelah分类理论的更高概括,其中限制仅放在更高的arity关系上,专注于n-依赖(n=1的情况对应于研究良好的NIP结构类),n-稳定性,n-远端性和n-融合,而不是传统的二元情况n=1。这将适用于在极端组合的超图定义在各种驯服结构的问题(通过Keisler措施),以及多项式展开现象的推广(Elekes-Szabó型定理),和代数结构的研究,如群和领域的定义,在n-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Artem Chernikov其他文献
On n-dependence
关于 n 依赖性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.7
- 作者:
Artem Chernikov;Daniel Palacin and Kota Takeuchi - 通讯作者:
Daniel Palacin and Kota Takeuchi
The partite construction with forbidden structures
禁止构筑物的分块建筑
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Artem Chernikov;Daniel Palacin and Kota Takeuchi;Kota Takeuchi - 通讯作者:
Kota Takeuchi
Artem Chernikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Artem Chernikov', 18)}}的其他基金
Model Theory of Valued Fields and Applications
有价值领域模型理论及其应用
- 批准号:
1922826 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Model theory, measures and combinatorics
职业:模型理论、测量和组合学
- 批准号:
1651321 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Model-Theoretic Classification, Graph Combinatorics, and Topological Dynamics
模型理论分类、图组合学和拓扑动力学
- 批准号:
1600796 - 财政年份:2016
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
基于传孢类型藓类植物系统的修订
- 批准号:30970188
- 批准年份:2009
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Multidimensional brain connectome features of depression and anxiety
抑郁和焦虑的多维脑连接组特征
- 批准号:
10571512 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
CAREER: Model theoretic classification theory, Fourier analysis, and hypergraph regularity
职业:模型理论分类理论、傅立叶分析和超图正则性
- 批准号:
2239737 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Learning-induced changes in distinct auditory cortical cell-types
学习引起的不同听觉皮层细胞类型的变化
- 批准号:
10823770 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Human Cerebrospinal Fluid Extracellular Vesicles: Utility as Disease Specific Biomarkers and Impact on Alzheimer's Disease Pathology
人脑脊液细胞外囊泡:作为疾病特异性生物标志物的用途及其对阿尔茨海默病病理学的影响
- 批准号:
10661249 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
The structure, classification and representation theory of locally extended affine Lie algebras
局部扩展仿射李代数的结构、分类和表示论
- 批准号:
23K03063 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
- 批准号:
10658688 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Establishing an Atrophy-Based Functional Network Model as a Biomarker for Seizure-Onset Laterality
建立基于萎缩的功能网络模型作为癫痫发作偏侧性的生物标志物
- 批准号:
10751261 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
A Study Toward a Systematic Classification of Kant's Theory of Modality
康德情态理论的系统分类研究
- 批准号:
22K19973 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
- 批准号:
2154637 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Using Symptom Network Models to Translate Theory to Clinical Applications
使用症状网络模型将理论转化为临床应用
- 批准号:
10387871 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:














{{item.name}}会员




